Publications by authors named "Xinlin J Chen"

Brain-computer interfaces (BCIs), such as the P300 speller, can provide a means of communication for individuals with severe neuromuscular limitations. BCIs interpret electroencephalography (EEG) signals in order to translate embedded information about a user's intent into executable commands to control external devices. However, EEG signals are inherently noisy and nonstationary, posing a challenge to extended BCI use.

View Article and Find Full Text PDF

Stimulus-driven brain-computer interfaces (BCIs), such as the P300 speller, rely on using sensory stimuli to elicit specific neural signal components called event-related potentials (ERPs) to control external devices. However, psychophysical factors, such as refractory effects and adjacency distractions, may negatively impact ERP elicitation and BCI performance. Although conventional BCI stimulus presentation paradigms usually design stimulus presentation schedules in a pseudo-random manner, recent studies have shown that controlling the stimulus selection process can enhance ERP elicitation.

View Article and Find Full Text PDF

Background Although technological advances to pump design have improved survival, left ventricular assist device (LVAD) recipients experience variable improvements in quality of life. Methods for optimizing LVAD support to improve quality of life are needed. We investigated whether acoustic signatures obtained from digital stethoscopes can predict patient-centered outcomes in LVAD recipients.

View Article and Find Full Text PDF

Objective: LVADs are surgically implanted mechanical pumps that improve survival rates of individuals with advanced heart failure. LVAD therapy is associated with high morbidity, which can be partially attributed to challenges with detecting LVAD complications before adverse events occur. Current methods used to monitor for complications with LVAD support require frequent clinical assessments at specialized LVAD centers.

View Article and Find Full Text PDF