Publications by authors named "Xinli Xiao"

Mutations in methyl CpG binding protein 2 (MeCP2) are linked to Rett syndrome, in which epilepsy is one of the most well-described disorders. However, little is known about the specific role of MeCP2 during epileptogenesis. Our previous study has demonstrated that MeCP2 has a unique control on the development of mossy fiber sprouting (MFS) in the epileptic hippocampus.

View Article and Find Full Text PDF

Sprouting of mossy fibers, one of the most consistent findings in tissue from patients with mesial temporal lobe epilepsy, exhibits several uncommon axonal growth features and has been considered a paradigmatic example of circuit plasticity that occurs in the adult brain. Clarifying the mechanisms responsible may provide new insight into epileptogenesis as well as axon misguidance in the central nervous system. Methyl-CpG-binding protein 2 (MeCP2) binds to methylated genomic DNA to regulate a range of physiological functions implicated in neuronal development and adult synaptic plasticity.

View Article and Find Full Text PDF
Article Synopsis
  • Anesthetics, specifically isoflurane, negatively impact neurogenesis in young mice, which may lead to long-term cognitive deficits.
  • The study investigated the effects of anesthetics on new cell generation from different regions in the brain (dentate gyrus) during postnatal development, revealing significant reductions in cell numbers from certain areas.
  • Results showed that isoflurane exposure specifically impairs the proliferation and survival of younger cells, correlating with behavioral deficits in learning tasks.
View Article and Find Full Text PDF
Article Synopsis
  • - Studies on young rodents indicate that anesthetic exposure, particularly to isoflurane, can lead to brain cell death and cognitive issues linked to the hippocampus, highlighting potential risks during critical developmental periods.
  • - Research focused on identifying the specific molecular changes in the dentate gyrus of 7-day-old mice after exposure to isoflurane and found significant changes in 1,059 pairs of miRNAs and target genes.
  • - The altered miRNAs and target genes were associated with vital processes like cell death, axon growth, and synapse function, providing new insights into how anesthetics can negatively impact brain development.
View Article and Find Full Text PDF

In temporal lobe epilepsy (TLE), abnormal axon guidance and synapse formation lead to sprouting of mossy fibers in the hippocampus, which is one of the most consistent pathological findings in patients and animal models with TLE. Glypican 4 (Gpc4) belongs to the heparan sulfate proteoglycan family, which play an important role in axon guidance and excitatory synapse formation. However, the role of Gpc4 in the development of mossy fibers sprouting (MFS) and its underlying mechanism remain unknown.

View Article and Find Full Text PDF

Mildew severely reduces soybean yield and quality, and pods are the first line of defence against pathogens. Maize-soybean intercropping (MSI) reduces mildew incidence on soybean pods; however, the mechanism remains unclear. Changing light (CL) from maize shading is the most important environmental feature in MSI.

View Article and Find Full Text PDF

In animal models with temporal lobe epilepsy (TLE), the status epilepticus (SE) leads to a dramatic increase in number of newly born neuron in the subgranular zone (SGZ) of dentate gyrus. How the SE confers a modulation in the dentate neurogenesis is mostly unknown. Gadd45b is involved in epigenetic gene activation by DNA demethylation.

View Article and Find Full Text PDF

Introduction: Recent animal studies showed that isoflurane exposure may lead to the disturbance of hippocampal neurogenesis and later cognitive impairment. However, much less is known about the effect of isoflurane exposure on the neurons generated form tertiary dentate matrix, even though a great increase of granule cell population during the infantile period is principally derived from this area.

Methods: To label the new cells originated from the tertiary dentate matrix, the mice were injected with BrdU on postnatal day 6 (P6).

View Article and Find Full Text PDF

MicroRNAs (miRNA) are believed to play a crucial role in the cause and treatment of temporal lobe epilepsy (TLE) by controlling gene expression in different stages of the disease. To investigate role of miRNA in the latent stage following status epilepticus, we first compared microRNA expression profiles in mice hippocampus at 1 week after pilocarpine-induced status epilepticus (SE) vs. controls in hippocampal tissues using Exiqon miRCURY LNA™ miRNAs Array.

View Article and Find Full Text PDF

Increased number of newly-born neurons produced at latent stage after status epilepticus (SE) contribute to aberrant rewiring of hippocampus and are hypothesized to promote epileptogenesis. Although physical training (PT) was reported to cause further increase in neurogenesis after SE, how PT affect their integration pattern is still elusive, whether they integrate into normal circuits or increase aberrant integrations is yet to be determined. To understand this basic mechanism by which PT effects SE and to elaborate the possible role of neuronal integrations in prognosis of SE, we evaluated the effect of 4 weeks of treadmill PT in adult male mice after pilocarpine-induced SE on behavioral and aberrant integrations' parameters.

View Article and Find Full Text PDF

Studies have shown that long noncoding ribonucleic acids (lncRNAs) play critical roles in multiple biologic processes. However, the Small Nucleolar RNA Host Gene 1 (SNHG1) function and underlying molecular mechanisms in ischemic stroke have not yet been reported. In the present study, we found that SNHG1 expression was remarkably increased both in isolated cerebral micro-vessels of a middle cerebral artery occlusion (MCAO) mice model, and in oxygen-glucose deprivation (OGD)-cultured mice brain micro-vascular endothelial cells (BMECs), meanwhile, the SNHG1 level was negatively correlated with miR-18a in MCAO mice.

View Article and Find Full Text PDF

Flexible and semi-rigid heat-shrinkable tubes (HSTs) have been used in thousands of applications, and here rigid high temperature HSTs are reported for the first time. These rigid HSTs are prepared with shape memory polyimides possessing glass transition temperatures (Ts) from 182 to 295 °C, and the relationships between T and their molecular structures are studied. The polyimide HSTs (PIHSTs) can fix expanded diameters and shrink back to original diameters very well, and the mechanisms of their heat-shrinkage performance are discussed.

View Article and Find Full Text PDF

Emerging evidence has demonstrated an important role of microRNAs (miRNAs) in the pathogenesis of cerebral infarction. In the present study, a down-regulation of microRNA-433 (miR-433) is identified in hypoxia-induced human umbilical vein vascular endothelial cells (HUVECs) as well as in rat neurons, and is found to be negatively regulated cell proliferation and migration. Moreover, the expression of miR-433 is inversely correlated with the expression of hypoxia-inducible factor 1 alpha (HIF-1α), which has been shown to play critical role in responding to hypoxia conditions.

View Article and Find Full Text PDF

High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.

View Article and Find Full Text PDF

Correction for 'Optically transparent high temperature shape memory polymers' by Xinli Xiao et al., Soft Matter, 2016, 12, 2894-2900.

View Article and Find Full Text PDF

Optically transparent shape memory polymers (SMPs) have potential in advanced optoelectronic and other common shape memory applications, and here optically transparent shape memory polyimide is reported for the first time. The polyimide possesses a glass transition temperature (Tg) of 171 °C, higher than the Tg of other transparent SMPs reported, and the influence of molecular structure on Tg is discussed. The 120 μm thick polyimide film exhibits transmittance higher than 81% in 450-800 nm, and the possible mechanism of its high transparency is analyzed, which will benefit further research on other transparent high temperature SMPs.

View Article and Find Full Text PDF

Emerging evidence has linked chronic temporal lobe epilepsy to dramatically reduced neurogenesis in the dentate gyrus. However, the profile of different components of neurogenesis in the chronically epileptic hippocampus is still unclear, especially the incorporation of newly generated cells. To address the issue, newly generated cells in the sub-granular zone of the dentate gyrus were labeled by the proliferation marker bromodeoxyuridine (BrdU) or retroviral vector expressing green fluorescent protein 2 months after pilocarpine-induced status epilepticus.

View Article and Find Full Text PDF

High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied.

View Article and Find Full Text PDF

The complete mRNA sequence of watermelon Rab18 gene was amplified through the rapid amplification of cDNA ends (RACE) method. The full-length mRNA was 1010 bp containing a 645 bp open reading frame, which encodes a protein of 214 amino acids. Sequence analysis revealed that watermelon Rab18 protein shares high homology with the Rab18 of cucumber (99%), muskmelon (98%), (90%), tomato (89%), wine grape (89%) and potato (88%).

View Article and Find Full Text PDF

Hippocampus has attracted the attention of the neuroscientists for its involvement in a wide spectrum of higher-order brain functions and pathological conditions, especially its persistent neurogenesis in subgranular zone (SGZ). The development of hippocampus was intensively investigated on animals such as rodents. However, in prenatal human hippocampus, little information on the distribution of neural stem/progenitor cells, newly generated neurons and mature neurons is available and the timetable of a series of neurogenesis event is even more obscure.

View Article and Find Full Text PDF

Objective: To observe the morphological changes during development of the ventricular zone (VZ) and subventricular zone (SVZ) of human fetus and the distribution pattern of neural stem cells in the VA and SVZ.

Methods: Human fetuses at the gestational ages of 9-11 weeks, 14-16 weeks, 22-24 weeks and 32-36 weeks were collected, and the brain sections of the VZ/SVZ under the frontal lobe were examined for cytoarchitecture and distribution of nestin-positive cells with HE staining, immunohistochemistry or immunofluorescence.

Results: The thickness of VZ underwent no significant changes at the gestational ages of 9-24 weeks (P>0.

View Article and Find Full Text PDF

Objective: Metabotropic glutamate receptor 5 (mGluR5) is concentrated in zones of active neurogenesis in the prenatal and postnatal rodent brain and plays an important role in the regulation of neurogenesis. However, little is known about mGluR5 in the prenatal human brain. Here, we aimed to explore the expression pattern and cellular distribution of mGluR5 in human fetal hippocampus.

View Article and Find Full Text PDF

Objective: To investigate the expression of metabotropic glutamate receptor 5 (mGluR5) and its cellular distribution in the frontal cortex, ventricular zone (VZ) and subventricular zone (SVZ) in human fetuses.

Methods: According to the gestational age, the collected fetuses were divided into 4 groups, namely 9-11 weeks, 14-16 weeks, 22-24 weeks and 32-36 weeks. Brain tissue blocks including the frontal lobe or VZ/SVZ were prepared into slices, and the expression pattern and cellular distribution of mGluR5 in the frontal cortex and VZ/SVZ were observed by immunohistochemistry or immunofluorescence.

View Article and Find Full Text PDF

Purpose: The aim of our study was to compare the efficacy and safety of uterine artery embolization (UAE) for symptomatic uterine fibroids with surgery.

Methods: Both a randomized, controlled trial and meta-analysis of existing studies were performed.

Results: Patients were randomly assigned in a 1:1 ratio to undergo either UAE or surgery with 63 patients undergoing UAE and 64 undergoing surgery.

View Article and Find Full Text PDF