70 % of the ulcerative colitis (UC) linked gene loci are associated with other autoimmune or immunodeficient diseases. The phosphatase activity of PTPN22 can regulate the development of T cells and contribute to regulate the level of inflammation in autoimmune diseases. We produced PTPN22-CS thymus-specific transgenic mice, which suppressed PTPN22 enzyme activity in the thymocytes.
View Article and Find Full Text PDFThe protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor (TCR)-mediated signaling pathway, such as the lymphocyte-specific protein tyrosine kinase (Lck), Src family tyrosine kinases Fyn, and the phosphorylation levels of Zeta-chain-associated protein kinase-70 (ZAP70). For the first time, we have successfully produced PTPN22 CS transgenic mice in which the tyrosine phosphatase activity of PTPN22 is suppressed. Notably, the number of thymocytes in the PTPN22 CS mice was significantly reduced, and the expression of cytokines in the spleen and lymph nodes was changed significantly.
View Article and Find Full Text PDFThe protein tyrosine phosphatase PTPN22 inhibits T cell activation by dephosphorylating some essential proteins in the T cell receptor-mediated signalling pathway, and its negative regulatory function protects organisms from autoimmune disease. 14-3-3τ is an adaptor protein that regulates target protein function through its intracellular localization. In the present study, we determined that PTPN22 binds to 14-3-3τ via the PTPN22-Ser640 phosphorylation side.
View Article and Find Full Text PDFOxid Med Cell Longev
February 2023
Glioblastoma is characterized as one of the deadliest cancers in humans. The survival time is not improved by standard treatment. Although immunotherapy has revolutionized cancer treatment, the current therapy targets for glioblastoma patients are not satisfied.
View Article and Find Full Text PDFProtein tyrosine phosphatases function in dephosphorylating target proteins to regulate signaling pathways that control a broad spectrum of fundamental physiological and pathological processes. Detailed knowledge concerning the roles of classical PTPs in human cancer merits in-depth investigation. We comprehensively analyzed the regulatory mechanisms and clinical relevance of classical PTPs in more than 9000 tumor patients across 33 types of cancer.
View Article and Find Full Text PDFDistant metastasis is the primary cause of breast cancer-associated death. The existing information, such as the precise molecular mechanisms and effective therapeutic strategies targeting metastasis, is insufficient to combat breast cancer. This study demonstrates that the protein tyrosine phosphatase PTPN18 is downregulated in metastatic breast cancer tissues and is associated with better metastasis-free survival.
View Article and Find Full Text PDF