Publications by authors named "Xinjun Shen"

Sulfonylurea herbicides are the most widely used herbicides in the world, which are widely used in the prevention and control of weeds in rice, wheat, soybean and other fields. Long-term application will cause environmental pollution, and the use of plasma technology to degrade herbicides in water is expected to be an effective method to restore pollution. In this experiment, corona discharge plasma was used to treat nicosulfuron in water, and the response surface method was used to optimise the operating conditions of the single system of corona discharge treatment of nicosulfuron and the synergistic system of corona discharge treatment of nicosulfuron with the addition of persulfate.

View Article and Find Full Text PDF

The principle of Fenton reagent is to produce ·OH by mixing HO and Fe to realize the oxidation of organic pollutants, although Fenton reagent has the advantages of non-toxicity and short reaction time, but there are its related defects. The Fenton-like technology has been widely studied because of its various forms and better results than the traditional Fenton technology in terms of pollutant degradation efficiency. This paper reviews the electro-Fenton technology among the Fenton-like technologies and provides an overview of the homogeneous electro-Fenton.

View Article and Find Full Text PDF

Atrazine (ATZ) is widely used in agriculture as a triazine herbicide, and its long-term use can cause serious environmental pollution. This paper independently designed a multi-electrode reactor, explored the output power and energy utilization efficiency of the dielectric barrier discharge reactor, and used the dielectric barrier discharge reactor to treat ATZ solution. The results showed that the degradation efficiency of ATZ was 96.

View Article and Find Full Text PDF

Environmental contamination issues have steadily surfaced with the rapid development of the cooking industry. In this paper, the front end of the cooking fume exhaust was filtered by the filter material, and then, the ultraviolet photolysis technology was used for in-depth treatment. The filter material filtration performance of glass fiber, molecular sieve, and composite filter material was studied by the filter efficiency, filter resistance, and quality factor three filter performance indexes.

View Article and Find Full Text PDF

Based on the wire-tube DBD reactor, this paper studied the effects of different discharge lengths, discharge air gaps, and electrical parameters on the discharge characteristics of the DBD discharge module. The results show that under the condition of increasing applied voltage, different discharge lengths, discharge air gaps, thicknesses of the insulating medium, and equivalent capacitance of insulating medium all show an increasing trend, while the equivalent capacitance of air-gap medium fluctuated within a certain range. When the discharge length was 30 cm, the discharge air gap was 2 mm, and the thickness of the insulating medium was 1 mm, the discharge effect was the best.

View Article and Find Full Text PDF

Brackish water was an important alternative source of freshwater. Desalination using flow electrode capacitive deionization (FCDI) needs to explore the role of ion exchange membranes (IEM) of FCDI. In this study, brackish water was desalinated using FCDI, and anion exchange membranes with different characteristics were used in the FCDI cell to investigate their influence.

View Article and Find Full Text PDF

Antibiotic residues may be very harmful in aquatic environments, because of limited treatment efficiency of traditional treatment methods. An electrochemical system with a Ti-based SnO-Sb-Ni anode was developed to degrade a typical antibiotic chloramphenicol (CAP) in water. The electrode was prepared using a sol-gel method.

View Article and Find Full Text PDF

In this study, the recycling of gas flow was added to oxidize mixture (toluene and xylene) in the post-plasma catalysis (PPC) system, and the MnOx catalysts using impregnation method were used to further oxidize the VOC mixture. The circulation and catalysts were of enhancement for the plasma degradation on both toluene and xylene. The improvement of CO selectivity and the reduction of NO, NO, and O were 64.

View Article and Find Full Text PDF

Cu-Sn-Bi layer coated on Ti substrate was prepared using electrodeposition method and applied as cathode material for electrochemical reduction of nitrate in this research. Linear sweep voltammetry (LSV), chronoamperometry (CA), scanning electron microscope (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) were used to scrutinize the electrochemical performance and the cathode materials. LSV results illustrated that Cu-Sn-Bi cathode possessed the ability for nitrate reduction.

View Article and Find Full Text PDF

The main technical challenges for the treatment of volatile organic compounds (VOCs) with plasma-assisted catalysis in industrial applications are large volume plasma generation under atmospheric pressure, byproduct control, and aerosol collection. To solve these problems, a back corona discharge (BCD) configuration has been designed to evenly generate nonthermal plasma in a honeycomb catalyst. Voltage-current curves, discharge images, and emission spectra have been used to characterize the plasma.

View Article and Find Full Text PDF