Publications by authors named "Xinhuan Zhou"

The coronary flow reserve (CFR), relating to the volumetric flow rate, is an effective functional parameter to assess the stenosis in the left anterior descending (LAD) coronary artery. We have recently proposed to use high-frame-rate (HFR) contrast-enhanced ultrasound (CEUS) to estimate the volumetric flow rate using ultrasound (US) speckle decorrelation (SDC) without any assumptions about the velocity profile. However, this method still has challenges in imaging deep and small vessels, such as LAD.

View Article and Find Full Text PDF

3-D blood vector flow imaging is of great value in understanding and detecting cardiovascular diseases. Currently, 3-D ultrasound vector flow imaging requires 2-D matrix probes, which are expensive and suffer from suboptimal image quality. Our recent study proposed an interpolation algorithm to obtain a divergence-free reconstruction of the 3-D flow field from 2-D velocities obtained by high-frame-rate ultrasound particle imaging velocimetry (High Frame Rate echo-Particle Imaging Velocimetry, also known as HFR Ultrasound Imaging Velocimetry (UIV)), using a 1-D array transducer.

View Article and Find Full Text PDF

Direct measurement of volumetric flow rate in the cardiovascular system with ultrasound is valuable but has been a challenge because most current 2-D flow imaging techniques are only able to estimate the flow velocity in the scanning plane (in-plane). Our recent study demonstrated that high frame rate contrast ultrasound and speckle decorrelation (SDC) can be used to accurately measure the speed of flow going through the scanning plane (through-plane). The volumetric flow could then be calculated by integrating over the luminal area, when the blood vessel was scanned from the transverse view.

View Article and Find Full Text PDF

Quantification of 3-D intravascular flow is valuable for studying arterial wall diseases but currently there is a lack of effective clinical tools for this purpose. Divergence-free interpolation (DFI) using radial basis function (RBF) is an emerging approach for full-field flow reconstruction using experimental sparse flow field samples. Previous DFI reconstructs full-field flow from scattered 3-D velocity input obtained using phase-contrast magnetic resonance imaging with low temporal resolution.

View Article and Find Full Text PDF

The objective of this study was to understand fluid flow in porous media. Understanding of fluid flow process in porous media is important for the geological storage of CO2. The high-resolution magnetic resonance imaging (MRI) technique was used to measure fluid flow in a porous medium (glass beads BZ-02).

View Article and Find Full Text PDF