Niche cells are widely known to regulate stem/progenitor cells in many mammalian tissues. In the hair, dermal papilla niche cells are well accepted to regulate hair stem/progenitor cells. However, how niche cells themselves are maintained is largely unknown.
View Article and Find Full Text PDFStem cell proliferation and differentiation must be carefully balanced to support tissue maintenance and growth. Defective stem cell regulation may underpin diseases in many organs, including the skin. LRIG1-expressing stem cells residing in the hair follicle junction zone (JZ) support sebaceous gland homeostasis.
View Article and Find Full Text PDFIn response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated.
View Article and Find Full Text PDFThe nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered.
View Article and Find Full Text PDFHair growth disorders often carry a major psychological burden. Therefore, more effective human hair growth-modulatory agents urgently need to be developed. Here, we used the hypertrichosis-inducing immunosuppressant, Cyclosporine A (CsA), as a lead compound to identify new hair growth-promoting molecular targets.
View Article and Find Full Text PDFCellular reprogramming, the process by which somatic cells regain pluripotency, is relevant in many disease modeling, therapeutic, and drug discovery applications. Molecular evaluation of reprogramming (e.g.
View Article and Find Full Text PDFHow stem cells maintain their identity and potency as tissues change during growth is not well understood. In mammalian hair, it is unclear how hair follicle stem cells can enter an extended period of quiescence during the resting phase but retain stem cell potential and be subsequently activated for growth. Here, we use lineage tracing and gene expression mapping to show that the Wnt target gene Axin2 is constantly expressed throughout the hair cycle quiescent phase in outer bulge stem cells that produce their own Wnt signals.
View Article and Find Full Text PDFThe mechanism and magnitude by which the mammalian kidney generates and maintains its proximal tubules, distal tubules, and collecting ducts remain controversial. Here, we use long-term in vivo genetic lineage tracing and clonal analysis of individual cells from kidneys undergoing development, maintenance, and regeneration. We show that the adult mammalian kidney undergoes continuous tubulogenesis via expansions of fate-restricted clones.
View Article and Find Full Text PDFThe skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
February 2013
The skin and its appendages constitute the largest organ of the body. Its stratified epithelia offer protection from environmental stresses such as dehydration, irradiation, mechanical trauma, and pathogenic infection, whereas its appendages, like hair and sebaceous glands, help regulate body temperature as well as influence animal interaction and social behavior through camouflage and sexual signaling. To respond to and function effectively in a dynamic external environment, the skin and its appendages possess a remarkable ability to regenerate in a carefully controlled fashion.
View Article and Find Full Text PDFHumans differ from other animals in many aspects of anatomy, physiology, and behaviour; however, the genotypic basis of most human-specific traits remains unknown. Recent whole-genome comparisons have made it possible to identify genes with elevated rates of amino acid change or divergent expression in humans, and non-coding sequences with accelerated base pair changes. Regulatory alterations may be particularly likely to produce phenotypic effects while preserving viability, and are known to underlie interesting evolutionary differences in other species.
View Article and Find Full Text PDFThe growth and differentiation of mesenchymal stem cells (MSCs) is controlled by various growth factors, the activities of which can be modulated by heparan sulfates (HSs). We have previously noted the necessity of sulfated glycosaminoglycans for the fibroblast growth factor type 2 (FGF-2)-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of HS to cultures of primary rat MSCs stimulates their proliferation, leading to increased expression of osteogenic markers and enhanced bone nodule formation.
View Article and Find Full Text PDFObjectives: Modulating cytokine signaling in vocal fold fibroblasts after injury may influence extracellular matrix (ECM) production and eventual fibrotic outcome. To evaluate previously established in vivo cytokine and ECM gene expression hypotheses, we examined in vitro vocal fold fibroblast responses to exogenous inflammatory factor stimulation.
Methods: Rat vocal fold fibroblast lines derived from explants were separately treated with interleukin-13 (IL-13), interferon gamma (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), transforming growth factor beta subtype 1 (TGF-beta1), or prostaglandin E2 (PGE2).
Ann Otol Rhinol Laryngol
February 2008
Objectives: Inflammatory factors are key mediators of wound healing processes following injury, and their modulation may improve healing outcomes. The objective of this study was to characterize in vivo inflammatory factor and extracellular matrix (ECM) messenger RNA (mRNA) expression levels 1 hour after vocal fold injury.
Methods: Five Sprague-Dawley rats were subjected to bilateral vocal fold injury, 5 rats were reserved as uninjured controls, and 1 rat was subjected to unilateral vocal fold injury and reserved for histology.
Ann Otol Rhinol Laryngol
December 2006
Objectives: Vocal fold scarring is the major cause of voice disorders after voice surgery or laryngeal trauma. The role of inflammatory factors in vocal fold wound healing and fibrosis has not been adequately investigated. Scarless wound healing has been associated with decreased inflammatory responses.
View Article and Find Full Text PDFObjectives: Fibroblasts are reported to play an important role in producing the extracellular matrix of the vocal fold. However, no reports have focused on how and where these cells are generated in the vocal fold after injury. To reveal the characteristics of vocal fold cell production, we investigated cell proliferation in the acute phase of wound healing.
View Article and Find Full Text PDFSummary: Phytochemical constituents of medicinal plants demonstrate inhibition of tissue and bacterial hyaluronidase. Echinacoside is a caffeoyl conjugate of Echinacea with known anti-hyaluronidase properties. The purpose of this study was to investigate the wound healing effects of Echinacea on vocal fold wound healing and functional voice outcomes.
View Article and Find Full Text PDF