In nature, some semiaquatic arthropods evolve biomechanics for jumping on the water surface with the controlled burst of kinetic energy. Emulating these creatures, miniature jumping robots deployable on the water surface have been developed, but few of them achieve the controllability comparable to biological systems. The limited controllability and agility of miniature robots constrain their applications, especially in the biomedical field where dexterous and precise manipulation is required.
View Article and Find Full Text PDFWith the development of materials science and micro-nano fabrication techniques, miniature soft robots at millimeter or submillimeter size can be manufactured and actuated remotely. The small-scaled robots have the unique capability to access hard-to-reach regions in the human body in a noninvasive manner. To date, it is still challenging for miniature robots to accurately move in the diverse and dynamic environments in the human body (e.
View Article and Find Full Text PDFThe rapidly transformed morphology of natural swarms enables fast response to environmental changes. Artificial microswarms can reconfigure their swarm patterns like natural swarms, which have drawn extensive attention due to their active adaptability in complex environments. However, as a prerequisite for biomedical applications of microswarms in confined environments, achieving on-demand control of pattern transformation rates remains a challenge.
View Article and Find Full Text PDFInspired by the collective intelligence in natural swarms, microrobotic agents have been controlled to form artificial swarms for targeted drug delivery, enhanced imaging, and hyperthermia. Different from these well-investigated tasks, this work aims to develop microrobotic swarms for embolization, which is a clinical technique used to block blood vessels for treating tumors, fistulas, and arteriovenous malformations. Magnetic particle swarms were formed for selective embolization to address the low selectivity of the present embolization technique that is prone to cause complications such as stroke and blindness.
View Article and Find Full Text PDFUntethered small-scale robots offer great promise for medical applications in complex biological environments. However, challenges remain in the control and medical imaging of a robot for targeted delivery inside a living body, especially in flowing conditions (e.g.
View Article and Find Full Text PDFEmulating natural swarm intelligence with group-level functionality in artificial micro/nanorobotic systems offers an opportunity to sublimate the limited functions of individuals and revolutionize their applications. However, achieving synchronous operation of microswarms with environmental adaptability and cooperative tasking capability remains a challenge. Here, an adaptive and heterogeneous colloidal magnetic microswarm with domino reaction encoded cooperative functions is presented.
View Article and Find Full Text PDFSwarming micro/nanorobots offer great promise in performing targeted delivery inside diverse hard-to-reach environments. However, swarm navigation in dynamic environments challenges delivery capability and real-time swarm localization. Here, we report a strategy to navigate a nanoparticle microswarm in real time under ultrasound Doppler imaging guidance for active endovascular delivery.
View Article and Find Full Text PDFBiofilm is difficult to thoroughly cure with conventional antibiotics due to the high mechanical stability and antimicrobial barrier resulting from extracellular polymeric substances. Encouraged by the great potential of magnetic micro-/nanorobots in various fields and their enhanced action in swarm form, we designed a magnetic microswarm consisting of porous FeO mesoparticles (p-FeO MPs) and explored its application in biofilm disruption. Here, the p-FeO MPs microswarm (p-FeO swarm) was generated and actuated by a simple rotating magnetic field, which exhibited the capability of remote actuation, high cargo capacity, and strong localized convections.
View Article and Find Full Text PDFNatural swarms can be formed by various creatures. The swarms can conduct demanded behaviors to adapt to their living environments, such as passing through harsh terrains and protecting each other from predators. At micrometer and nanometer scales, formation of a swarm pattern relies on the physical or chemical interactions between the agents owing to the absence of an on-board device.
View Article and Find Full Text PDFVarious types of structures self-organised by animals exist in nature, such as bird flocks and insect swarms, which stem from the local communications of vast numbers of limited individuals. Through the designing of algorithms and wireless communication, robotic systems can emulate some complex swarm structures in nature. However, creating a swarming robotic system at the microscale that embodies functional collective behaviours remains a challenge.
View Article and Find Full Text PDF