Tomato (Solanum lycopersicum) stands as one of the most valuable vegetable crops globally, and fruit firmness significantly impacts storage and transportation. To identify genes governing tomato firmness, we scrutinized the firmness of 266 accessions from core collections. Our study pinpointed an ethylene receptor gene, SlEIN4, located on chromosome 4 through a genome-wide association study (GWAS) of fruit firmness in the 266 tomato core accessions.
View Article and Find Full Text PDFIn the past decades, various xenobiotic nucleic acids (XNAs), including 2'-modified nucleic acids, have been developed as novel genetic materials and demonstrated great potential in synthetic biology and biotechnology. Enzymatic polymerization and replication of these artificial polymers are obviously the prerequisite to make full use of them, and DNA and RNA polymerases from different families have thus been extensively engineered for these purposes. However, the performance of engineered XNA polymerases is still far from satisfactory, especially in terms of the efficiency of synthesizing XNA with bigger lengths and the capability of directly replicating XNAs or transcribing one XNA to another.
View Article and Find Full Text PDFInt J Mol Sci
November 2022
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology.
View Article and Find Full Text PDFNucleic acids have been extensively modified in different moieties to expand the scope of genetic materials in the past few decades. While the development of unnatural base pairs (UBPs) has expanded the genetic information capacity of nucleic acids, the production of synthetic alternatives of DNA and RNA has increased the types of genetic information carriers and introduced novel properties and functionalities into nucleic acids. Moreover, the efforts of tailoring DNA polymerases (DNAPs) and RNA polymerases (RNAPs) to be efficient unnatural nucleic acid polymerases have enabled broad application of these unnatural nucleic acids, ranging from production of stable aptamers to evolution of novel catalysts.
View Article and Find Full Text PDF