Ovarian cancer (OC) is a lethal gynecological malignancy with a five-year survival rate of only 46%. Development of resistance to platinum-based chemotherapy is a common cause of high mortality rates among OC patients. Tumor and transcriptomic heterogeneity are drivers of platinum resistance in OC.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWe hereby provide the initial portrait of lincNORS, a spliced lincRNA generated by the MIR193BHG locus, entirely distinct from the previously described miR-193b-365a tandem. While inducible by low O in a variety of cells and associated with hypoxia in vivo, our studies show that lincNORS is subject to multiple regulatory inputs, including estrogen signals. Biochemically, this lincRNA fine-tunes cellular sterol/steroid biosynthesis by repressing the expression of multiple pathway components.
View Article and Find Full Text PDFThe majority of women diagnosed with epithelial ovarian cancer eventually develop recurrence, which rapidly evolves into chemoresistant disease. Persistence of ovarian cancer stem cells (OCSC) at the end of therapy may be responsible for emergence of resistant tumors. In this study, we demonstrate that in OCSC, the tumor suppressor disabled homolog 2-interacting protein (DAB2IP) is silenced by EZH2-mediated H3K27 trimethylation of the DAB2IP promoter.
View Article and Find Full Text PDFOvarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Cancer stem cells (CSCs) that exist within the bulk tumor survive first-line chemotherapy and contribute to resistant disease with metastasis. Understanding the key features of CSC biology provides valuable opportunities to develop OCSC-directed therapeutics, which will eventually improve the clinical outcomes of patients.
View Article and Find Full Text PDFIn high-grade serous ovarian cancer (OC), chemotherapy eliminates the majority of tumor cells, leaving behind residual tumors enriched in OC stem cells (OCSC). OCSC, defined as aldehyde dehydrogenase-positive (ALDH+), persist and contribute to tumor relapse. Inflammatory cytokine IL-6 is elevated in residual tumors after platinum treatment, and we hypothesized that IL-6 plays a critical role in platinum-induced OCSC enrichment.
View Article and Find Full Text PDFIn addition to its vasodilatory effect, ligustrazine (LZ) improves the sensitivity of multidrug resistant cancer cells to chemotherapeutic agents. To enhance the specificity of LZ delivery to tumor cells/tissues, folate‑chitosan nanoparticles (FA‑CS‑NPs) were synthesized by combination of folate ester with the amine group on chitosan to serve as a delivery vehicle for LZ (FA‑CS‑LZ‑NPs). The structure of folate‑chitosan and characteristics of FA‑CS‑LZ‑NPs, including its size, encapsulation efficiency, loading capacity and release rates were analyzed.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum.
View Article and Find Full Text PDFWnt/β-catenin signaling pathway plays a major role in the cancer metastasis. Several microRNAs (miRNAs) are contributed to the inhibition of breast cancer metastasis. Here, we attempted to find novel targets and mechanisms of microRNA-100 (miR-100) in regulating the migration and invasion of breast cancer cells.
View Article and Find Full Text PDF