Humans possess a remarkable ability to rapidly access diverse information from others' faces with just a brief glance, which is crucial for intricate social interactions. While previous studies using event-related potentials/fields have explored various face dimensions during this process, the interplay between these dimensions remains unclear. Here, by applying multivariate decoding analysis to neural signals recorded with optically pumped magnetometer magnetoencephalography, we systematically investigated the temporal interactions between invariant and variable aspects of face stimuli, including race, gender, age, and expression.
View Article and Find Full Text PDFMultimodal neuroimaging plays an important role in neuroscience research. Integrated noninvasive neuroimaging modalities, such as magnetoencephalography (MEG), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), allow neural activity and related physiological processes in the brain to be precisely and comprehensively depicted, providing an effective and advanced platform to study brain function. Noncryogenic optically pumped magnetometer (OPM) MEG has high signal power due to its on-scalp sensor layout and enables more flexible configurations than traditional commercial superconducting MEG.
View Article and Find Full Text PDFBackground: Recent progress in optically pumped magnetometers (OPMs) and high-temperature superconducting quantum interference devices (SQUIDs) has facilitated the development of an on-scalp magnetoencephalography (MEG) system that offers high signal intensity and flexibility at a lower cost. While the on-scalp sensor array has high flexibility, it brings new challenges to accurate sensor-to-brain coregistration, which is essential for MEG source localization.
New Method: A novel automatic filtering algorithm based on plane segmentation was proposed to locate on-scalp MEG sensors in 3D images reconstructed from optical scanning.