The defects have a remarkable influence on the electronic structures and the electric transport behaviors of the matter, providing the additional means to engineering their physical properties. In this work, a comprehensive study on the effect of Br-vacancies on the electronic structures and transport behaviors in the high-order topological insulator BiBr is performed by the combined techniques of the scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and physical properties measurement system along with the first-principle calculations. The STM results show the defects on the cleaved surface of a single crystal and reveal that the defects are correlated to the Br-vacancies with the support of the simulated STM images.
View Article and Find Full Text PDFBackground: The prevalence of hyperuricemia (HUA) has been increasing in recent years. HUA is a crucial risk factor for gout and an independent risk factor for cardiovascular diseases (CVDs). Identifying potentially modifiable factors of HUA is vital for preventing gout and even CVDs.
View Article and Find Full Text PDF