Publications by authors named "Xingyu Jiang"

Cassava plants can adapt to poor soils where most other crops are unable to grow normally, suggesting that they are able to efficiently uptake and utilize nutrient elements from the soils. However, little is known about the mechanism of nutrient efficiency in the crop. Herein, we report that cassava grows better under low concentration of mixed nitrogen sources (0.

View Article and Find Full Text PDF

Cancer-related anemia (CRA), a complication of cancer, is considered the primary cause of high mortality for cancer patients. Safe and effective theranostics are desirable for realizing the high diagnostic accuracy of tumors and ameliorating CRA in the clinic. However, the available theranostics do not support dual-modal imaging and the amelioration of CRA at the same time.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on addressing the shortage of n-type polymers for organic electrochemical transistors (OECTs), which are crucial for electronic devices.
  • It introduces three new polymers synthesized using an environmentally friendly method called oxidative direct arylation polycondensation (Oxi-DArP), which utilizes unfunctionalized monomers.
  • Among them, the polymer gTzDPP-C8 demonstrated exceptional performance, achieving high transconductance and capacitance, highlighting the effectiveness of this new synthesis method for creating high-performance n-type organic materials.
View Article and Find Full Text PDF

Background: PANoptosis is a cell death pathway involved in pyroptosis, apoptosis and necrosis, and plays a key role in the development of malignant tumors. However, the molecular signature of PANoptosis in colorectal cancer (CRC) prognosis has not been thoroughly explored. The present study aimed to develop a novel prognostic model based on PANoptosis-related genes in CRC.

View Article and Find Full Text PDF

Although the biogeographical pattern and mechanisms underlying microbial assembly have been well-explored in lentic ecosystems, the relevant scenarios in lotic ecosystems remain poorly understood. By sequencing the bacterial communities in bacterioplankton and biofilm, our study detected their distance-decay relationship (DDR), and the balance between deterministic and stochastic processes, along the Kaidu river in an arid and semi-arid region of northwest China. Our results revealed that bacterioplankton and biofilm had significantly contrasting community structures.

View Article and Find Full Text PDF

In epithelial ovarian cancer (EOC), platinum resistance, potentially mediated by cancer stem cells (CSCs), often leads to relapse and treatment failure. Here, the role of spindle pole body component 25 (SPC25) as a key determinant promoting stemness and platinum resistance in EOC cells, with its expression being correlated with adverse clinical outcomes is delineated. Mechanistically, SPC25 acts as a scaffolding platform, orchestrating the assembly of an SPC25/RIOK1/MYH9 trimeric complex, triggering RIOK1-mediated phosphorylation of MYH9 at Ser1943.

View Article and Find Full Text PDF
Article Synopsis
  • - Bacterial infections are a major health issue, highlighting the need for new, effective, and safe antibacterial drugs.
  • - Researchers created a ZnO-kaolinite composite using a special method that improves antibacterial properties when combined with high-frequency ultrasound.
  • - Tests show that this composite works really well against bacteria, making it a promising alternative to traditional antibacterial treatments.
View Article and Find Full Text PDF

High-quality electrophysiological monitoring requires electrodes to maintain a compliant and stable skin contact. This necessitates low impedance, good skin compliance, and strong adhesion to ensure continuous and stable contact under dynamic conditions. In this context, adhesive epidermal dry electrodes are advancing rapidly, which is promising for long-term applications in clinical diagnosis, wearable health monitoring, and human-machine interfaces.

View Article and Find Full Text PDF

As digital data undergo explosive growth, deoxyribonucleic acid (DNA) has emerged as a promising storage medium due to its high density, longevity, and ease of replication, offering vast potential in data storage solutions. This study focuses on the protection and retrieval of data during the DNA storage process, developing a technique that employs flow cytometry sorting (FCS) to segregate multicolored fluorescent DNA microparticles encoded with data and facilitating efficient random access. Moreover, the encapsulated fluorescent DNA microparticles, formed through layer-by-layer self-assembly, preserve structural and sequence integrity even under harsh conditions while also supporting a high-density DNA payload.

View Article and Find Full Text PDF
Article Synopsis
  • Microfluidic mixing is essential in fields like materials synthesis and biochemical analysis, and this study introduces a new method to improve mixing efficiency.
  • The proposed strategy involves splitting liquids into branches that converge in an organized pattern, which reduces flow width and mixing distances, boosting efficiency by about 10 times.
  • Importantly, this enhancement only requires modifications to the inflow channel’s structure, making it versatile and applicable to various mixing setups, as demonstrated by its use in producing more uniform lactic-glycolic acid nanoparticles.
View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs), with transcript lengths exceeding 200 nucleotides and little or no protein-coding capacity, have been found to impact colorectal cancer (CRC) through various biological processes. LncRNA expression can regulate autophagy, which plays dual roles in the initiation and progression of cancers, including CRC. Abnormal expression of lncRNAs is associated with the emergence of chemoresistance.

View Article and Find Full Text PDF

For numerous biological and human-machine applications, it is critical to have a stable electrophysiological interface to obtain reliable signals. To achieve this, epidermal electrodes should possess conductivity, stretchability, and adhesiveness. However, limited types of materials can simultaneously satisfy these requirements to provide satisfying recording performance.

View Article and Find Full Text PDF

Acinetobacter baumannii is currently one of the most important opportunistic pathogens causing severe nosocomial infections worldwide. Quorum Sensing (QS) system is a widespread mechanism in bacteria to coordinate group behavior by sensing the density of bacterial populations and affect eukaryotic host cell. In Acinetobacter baumannii, AbaI protein is used as QS molecule synthetase to synthesize N- acyl homoserine lactones (AHLs).

View Article and Find Full Text PDF

Live imaging of primary neural cells is crucial for monitoring neuronal activity, especially multiscale and multifunctional imaging that offers excellent biocompatibility. Multiscale imaging can provide insights into cellular structure and function from the nanoscale to the millimeter scale. Multifunctional imaging can monitor different activities in the brain.

View Article and Find Full Text PDF

The antitumor performance of PROteolysis-TArgeting Chimeras (PROTACs) is limited by its insufficient tumor specificity and poor pharmacokinetics. These disadvantages are further compounded by tumor heterogeneity, especially the presence of cancer stem-like cells, which drive tumor growth and relapse. Herein, we design a region-confined PROTAC nanoplatform that integrates both reactive oxygen species (ROS)-activatable and hypoxia-responsive PROTAC prodrugs for the precise manipulation of bromodomain and extraterminal protein 4 expression and tumor eradication.

View Article and Find Full Text PDF
Article Synopsis
  • Surface cracks are early indicators of potential infrastructure damage, making their detection crucial for ensuring the safety of bridges, with traditional human inspection being unreliable and labor-intensive.
  • The proposed YOLOv8-AFPN-MPD-IoU model utilizes advanced deep learning techniques, such as instance segmentation with YOLOv8s-Seg and an asymptotic feature pyramid network for improved performance in detecting and measuring cracks.
  • This model outperforms existing methods with impressive metrics, achieving a precision of 90.7% and significantly enhancing performance compared to other models, making it a valuable tool for accurately assessing bridge surface cracks.
View Article and Find Full Text PDF

Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability.

View Article and Find Full Text PDF

An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative.

View Article and Find Full Text PDF
Article Synopsis
  • Transarterial chemoembolization (TACE) is a treatment for unresectable primary liver cancer, but it struggles with poor long-term drug release and effectiveness.
  • Researchers created gelatin-based microembolic agents that use nanosized poly(acrylic acid) to improve drug loading and release patterns, allowing for sustained treatment over two months.
  • The new microembolics showed excellent delivery and tumor-killing abilities in animal models while causing minimal inflammation and permanent vessel embolization after degradation, offering a promising strategy for enhancing local chemotherapy outcomes.
View Article and Find Full Text PDF

Unlabelled: FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides.

View Article and Find Full Text PDF