Publications by authors named "Xingyu Gan"

The design of non-noble metal bifunctional electrocatalysts with outstanding performance and remarkable stability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most essential issues to the realization of rechargeable zinc-air battery, and transition metal phosphides (TMPs) have emerged as robust candidates for oxygen electrocatalysts. Herein, N-doped carbon-coated phosphorus-vacancies-rich Ni P particles (V -Ni P@NC) is proposed via simple carbonization and following Ar plasma treatment from a single nickel phosphonate metal-organic framework (MOF) without extra phosphine and nitrogen sources. The facile and rapid plasma treatment can achieve phosphorus vacancies which could modulate the electronic structure to enhance the inherent active and electrical conductivity.

View Article and Find Full Text PDF

is a pupal endoparasitoid of many Pyralidae pests and has been used as a biocontrol agent against insect pests that heavily damage the cone and seed of the Korean pine. The olfactory system of wasps plays an essential role in sensing the chemical signals during their foraging, mating, host location, etc., and the chemosensory genes are involved in detecting and transducing these signals.

View Article and Find Full Text PDF

Oxygen evolution reaction (OER) is an important half-cell reaction of the electrical water splitting, for its high overpotential associated with sluggish OER kinetics. Therefore, it is critical to develop highly active and durable electrocatalysts to reduce the overpotential. Herein, ultra-small RuOnanoparticles (NPs) supported on onion-like carbon (OLC) and carbon nanotube (CNT) are successfully synthesized by means of wet impregnation combined with annealing treatment, respectively.

View Article and Find Full Text PDF

High-performance non-noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large-scale utilization of fuel cells. Herein, a type of sandwiched-like non-noble electrocatalyst with highly dispersed FeN active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom-up strategy. The in situ ion substitution of Fe in a nitrogen-containing MOF (ZIF-8) allows the Fe-heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe-doped ZIF-8 nano-crystals with graphene-oxide and in situ reduction of graphene-oxide afford a sandwiched-like Fe-doped ZIF-8/graphene heterostructure.

View Article and Find Full Text PDF