Publications by authors named "Xingyan Lu"

At a sedimentary site in an old mine site, Miscanthus sinensis formed patches, where Pinus densiflora seedlings could grow better compared with those outside the patches, indicating that M. sinensis would improve P. densiflora seedling establishment.

View Article and Find Full Text PDF

, a root endophyte in , enhances Al tolerance in by changing aluminum (Al) localization and the production of a siderophore, oosporein, which chelates Al for detoxification. Oosporein has various functions, including insecticidal activity, phytotoxicity, antifungal activity, and a siderophore. In our study, we focused on the detoxification effect of oosporein as a siderophore and on the growth of under Al exposure.

View Article and Find Full Text PDF

Objective: To study the effect of aldosterone on cell proliferation, alkaline phosphatase (AKP) activity and osteogenic gene expression in rat osteoblasts and explore the mechanisms.

Methods: Osteoblasts isolated from the skull of neonatal SD rats by enzyme digestion were cultured and treated with different concentrations of aldosterone. The cell proliferation and AKP activity were evaluated using CCK-8 assay kit and AKP assay kit, respectively.

View Article and Find Full Text PDF

Activation of osteoblasts in bone formation and osteoclasts in bone resorption is important during the bone fracture healing process. There has been a long interest in identifying and developing a natural therapy for bone fracture healing. In this study, we investigated the regulation of osteoclast differentiation by baicalin, which is a natural molecule extracted from Eucommiaulmoides (small tree native to China).

View Article and Find Full Text PDF

Ferulic acid (FA) is an active component of the traditional Chinese herb Angelica sinensis. Numerous health benefits have been attributed to FA, but few studies have investigated the effects of FA on osteoblasts (Obs). Our work studied the effects of FA on proliferation, differentiation, and mineralization of rat calvarial Obs and examined the signaling pathways involved.

View Article and Find Full Text PDF

Objective: To explore the role of epithelial sodium channel (ENaC) in regulating the functional activity of osteoclasts.

Methods: Multinucleated osteoclasts were obtained by inducing the differentiation of rat bone marrow cells with macrophage colony-stimulating factor (M-CSF) and RANKL. The osteoclasts were exposed to different concentrations of the ENaC inhibitor amiloride, and the expression of ENaC on osteoclasts was examined using immunofluorescence technique.

View Article and Find Full Text PDF

Introduction: Mesenchymal stem cells (MSCs) play a central role in the remediation of cell and tissue damage. Erythropoietin (EPO) may enhance the beneficial influence of MSCs during recovery from tissue and organ injuries. Microvesicles (MVs) released from MSCs contribute to the restoration of kidney damage.

View Article and Find Full Text PDF

Aims: Micro-vesicles (MVs) from bone mesenchymal stem cells (MSCs) have been shown to contribute to the recovery of damaged kidney. The aims of the present study are to investigate the biological effects and repair mechanisms of MVs.

Methods: Micro-vesicles were obtained from MSC supernatants.

View Article and Find Full Text PDF

The amiloride-sensitive epithelial sodium channel (ENaC) is a major contributor to intracellular sodium homeostasis. In addition to epithelial cells, osteoblasts (Obs) express functional ENaCs. Moreover, a correlation between bone Na content and bone disease has been reported, suggesting that ENaC-mediated Na(+) regulation may influence osteogenesis.

View Article and Find Full Text PDF

Objective: To study the influence of Plantaginis Semen on cell proliferation, differentiation and function of rat osteoblasts, and investigate the regulation effects of rat osteoblast epithelial sodium channel (ENaC) on bone formation.

Methods: The animal serum was prepared by serum pharmacology means. The cells were got by separating and inducing the SD neonatal rat's skull bone.

View Article and Find Full Text PDF

Kringle 1-3 domain is a recently found angiogenesis inhibitor with anti-angiogenesis and anti-tumor activity. The kringle 1-3 gene was amplified by PCR technique using angiostatin gene as template. After DNA sequencing, the PCR product was cloned into pPIC9K resulting in recombinant plasmid pPIC9K13 which was then transformed into Pichia pastoris GS115.

View Article and Find Full Text PDF