Publications by authors named "Xingxing Xing"

The burgeoning online video game industry has sparked intense competition among providers to both expand their user base and retain existing players, particularly within social interaction genres. To anticipate player churn, there is an increasing reliance on machine learning (ML) models that focus on social interaction dynamics. However, the prevalent opacity of most ML algorithms poses a significant hurdle to their acceptance among domain experts, who often view them as "black boxes".

View Article and Find Full Text PDF

Graph convolutional networks (GCNs) have achieved great success in many applications and have caught significant attention in both academic and industrial domains. However, repeatedly employing graph convolutional layers would render the node embeddings indistinguishable. For the sake of avoiding oversmoothing, most GCN-based models are restricted in a shallow architecture.

View Article and Find Full Text PDF

Photonic-based qubits and integrated photonic circuits have enabled demonstrations of quantum information processing (QIP) that promises to transform the way in which we compute and communicate. To that end, sources of polarization-entangled photon pair states are an important enabling technology. However, such states are difficult to prepare in an integrated photonic circuit.

View Article and Find Full Text PDF

We present an experimental realization of a flexible quantum channel where the Hilbert space dimensionality can be controlled electronically. Using electro-optical modulators (EOM) and narrow-band optical filters, quantum information is encoded and decoded in the temporal degrees of freedom of photons from a long-coherence-time single-photon source. Our results demonstrate the feasibility of a generic scheme for encoding and transmitting multidimensional quantum information over the existing fiber-optical telecommunications infrastructure.

View Article and Find Full Text PDF

We propose a multidimensional quantum information encoding approach based on temporal modulation of single photons, where the Hilbert space can be spanned by an in-principle infinite set of orthonormal temporal profiles. We analyze two specific realizations of such modulation schemes, and show that error rate per symbol can be smaller than 1% for practical implementations. Temporal modulation may enable multidimensional quantum communication over the existing fiber optical infrastructure, as well as provide an avenue for probing high-dimensional entanglement approaching the continuous limit.

View Article and Find Full Text PDF

We show that weak measurement can be used to "amplify" optical nonlinearities at the single-photon level, such that the effect of one properly postselected photon on a classical beam may be as large as that of many unpostselected photons. We find that "weak-value amplification" offers a marked improvement in the signal-to-noise ratio in the presence of technical noise with long correlation times. Unlike previous weak-measurement experiments, our proposed scheme has no classical equivalent.

View Article and Find Full Text PDF