The escalating volume of decoration and renovation waste (D&RW) amid the rapid urbanization in China has posed significant challenges for the effective recycling of this waste stream, primarily due to the difficulty of accurately assessing its precise composition. To enhance the recycling of high-value materials from D&RW, a comprehensive understanding of its composition and quality is crucial before sorting. In this study, we propose a hybrid method that combines instance segmentation deep learning (DL) models with morphological machine learning (ML) models to automate the classification and evaluation of D&RW.
View Article and Find Full Text PDF