Publications by authors named "Xingwen Han"

Kartogenin (KGN) can effectively promote the differentiation of adipose derived stem cells (ADSCs) into chondrocytes. With the help of three-dimensional slow-release technology, nano-microspheres are generated and used for cartilage repair. First, KGN solution was prepared, which was dissolved in distilled water, and NaOH solution, HEPES buffer, sodium chloride particles, and hydroxyapatite (HA) solution were added to prepare KGN-HA gel solution containing KGN.

View Article and Find Full Text PDF

Objective: Mesenchymal stem cells (MSCs) confer therapeutic benefits in various pathologies and cancers by releasing extracellular vesicles (EVs) loaded with bioactive compounds. Herein, we identified bone marrow MSC (BMSC)-derived EVs harboring microRNA (miR)-29b-3p to regulate osteogenic differentiation through effects on the suppressor of cytokine signaling 1 (SOCS1)/nuclear factor (NF)-κB pathway targeting of lysine demethylase 5A (KDM5A) in osteoporosis.

Methods: We quantified the miR-29b-3p in BMSC-derived EVs from bone marrow specimens of osteoporotic patients and non-osteoporotic patients during total hip arthroplasty (THA).

View Article and Find Full Text PDF

The present work aims to examine the effect of gelatin on the stabilization of silver nanoparticles (AgNPs) and their use in healing the bone fracture. AgNPs-loaded Gel hydrogels (AgNPs/Gel) were fabricated under sunlight using gelatin (Gel) as stabilizing agent. The characterization of the synthesized hydrogels was performed with the help of techniques such as UV-visible spectroscopy (UV-Vis) and high-resolution transmission electron microscopy (HR-TEM).

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) exhibit the capacity to self-renew and differentiate into multi-lineage cell types, including osteoblasts, which are crucial regulators of fracture healing. Thus, this study aims to investigate the effect of microRNA (miR)-22-3p from BMSC-derived EVs on osteogenic differentiation and its underlying mechanism.

Methods: Extracellular vesicles (EVs) were isolated from BMSCs and taken up with BMSCs.

View Article and Find Full Text PDF

Bone defects resulting from non-union fractures or tumour resections are common clinical problems. Long non-coding RNAs (lncRNAs) are reported to play vital roles in stem cell differentiation. The aim of this study was to elucidate the role of lncRNA-H19 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs).

View Article and Find Full Text PDF

Objectives: Angiotensinogen (AGT) and miR-149-5p were differentially expressed genes in the osteoarthritis (OA), but their functional contribution to this disease is unclear. Our study aimed to illustrate their relevance to OA pathology and chondrocytic inflammation responses.

Methods: In this study, a total of 32 healthy donors and 56 OA patients were recruited for cartilage tissues, and interleukin (IL)-6-stimulated human chondrocyte-articular (HC-a) cells were used as an in vitro OA model.

View Article and Find Full Text PDF

Exosomes derived from differentiated P12 cells and MSCs were proved to suppress apoptosis of neuron cells, and phosphatase and tensin homolog pseudogene 1 (PTENP1) was reported to inhibit cell proliferation. In this study, we aimed to investigate the role of PTENP1 in the process of post-spinal cord injury (SCI) recovery, so as to evaluate the therapeutic effects of exosomes derived from MSCs transfected with PTENP1 short hairpin RNA (shRNA), as a type of novel biomarkers in the treatment of SCI. Electron microscopy was used to observe the morphology of different exosomes.

View Article and Find Full Text PDF

Pyruvate dehydrogenase kinases (PDKs) act as negative modulator of mitochondrial pyruvate dehydrogenase complex (PDC) and play a crucial role in the regulation of oxidative glycolysis, which recently have been considered as a potential drug target for varying types of cancer and diabetes. Herein, we describe the discovery and biological validation of novel anti-osteosarcoma therapeutics targeting PDK2. We identified 14 anti-osteosarcoma compounds from an in-house small molecule library, which were then evaluated in a PDK2 kinase inhibition assay.

View Article and Find Full Text PDF

MicroRNAs (miRs) involve in osteogenic differentiation and osteogenic potential of mesenchymal stem cells (MSCs). Accordingly, the present study aimed to further uncover role miR-149 plays in osteogenic differentiation of MSCs with the involvement of the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) pathway. Initially, the osteogenic differentiation model was induced.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy, and is particularly prevalent in children and adolescents. OS is an aggressive tumor with a tendency to metastasize and invade to para-carcinoma tissues. The primary treatment for this tumor is a combination of surgery and chemotherapy.

View Article and Find Full Text PDF

Background: Previous studies have assessed the association between the Cytotoxic T-lymphocyte Antigen- 4(CTLA-4) polymorphism with the risk of malignant bone tumor, but the conclusions were inconsistent. We aimed to clarify association of cytotoxic T-lymphocyte antigen-4 polymorphisms with malignant bone tumors risk by performing a meta-analysis.

Materials And Methods: The databases including PubMed, EMBase databases and the Cochrane Library were searched to identify the eligible studies prior to January 30 2016.

View Article and Find Full Text PDF