Publications by authors named "Xingwei Tong"

Deep learning has continuously attained huge success in diverse fields, while its application to survival data analysis remains limited and deserves further exploration. For the analysis of current status data, a deep partially linear Cox model is proposed to circumvent the curse of dimensionality. Modeling flexibility is attained by using deep neural networks (DNNs) to accommodate nonlinear covariate effects and monotone splines to approximate the baseline cumulative hazard function.

View Article and Find Full Text PDF

The application of transfer learning in fault diagnosis has been developed in recent years. It can use existing data to solve the problem of fault recognition under different working conditions. Due to the complexity of the equipment and the openness of the working environment in industrial production, the status of the equipment is changeable, and the collected signals can have new fault classes.

View Article and Find Full Text PDF

This article discusses regression analysis of mixed interval-censored failure time data. Such data frequently occur across a variety of settings, including clinical trials, epidemiologic investigations, and many other biomedical studies with a follow-up component. For example, mixed failure times are commonly found in the two largest studies of long-term survivorship after childhood cancer, the datasets that motivated this work.

View Article and Find Full Text PDF

This article discusses regression analysis of right-censored failure time data where there may exist a cured subgroup, and also covariate effects may be varying with time, a phenomena that often occurs in many medical studies. To address the problem, we discuss a class of varying coefficient transformation models along with a logistic model for the cured subgroup. For inference, a sieve maximum likelihood approach is developed with the use of spline functions, and the asymptotic properties of the proposed estimators are established.

View Article and Find Full Text PDF

Time-to-event data are very common in observational studies. Unlike randomized experiments, observational studies suffer from both observed and unobserved confounding biases. To adjust for observed confounding in survival analysis, the commonly used methods are the Cox proportional hazards (PH) model, the weighted logrank test, and the inverse probability of treatment weighted Cox PH model.

View Article and Find Full Text PDF

When a single gene influences more than one trait, known as pleiotropy, it is important to detect pleiotropy to improve the biological understanding of a gene. This can lead to improved screening, diagnosis, and treatment of diseases. Yet, most current multivariate methods to evaluate pleiotropy test the null hypothesis that none of the traits are associated with a variant; departures from the null could be driven by just one associated trait.

View Article and Find Full Text PDF

In many clinical studies, patients may be asked to report their medication adherence, presence of side effects, substance use, and hospitalization information during the study period. However, the exact occurrence time of these recurrent events may not be available due to privacy protection, recall difficulty, or incomplete medical records. Instead, the only available information is whether the events of interest have occurred during the past period.

View Article and Find Full Text PDF

This paper discusses regression analysis of doubly censored failure time data when there may exist a cured subgroup. By doubly censored data, we mean that the failure time of interest denotes the elapsed time between two related events and the observations on both event times can suffer censoring (Sun in The statistical analysis of interval-censored failure time data. Springer, New York, 2006).

View Article and Find Full Text PDF

High-throughput sequencing technologies have enabled large-scale studies of the role of the human microbiome in health conditions and diseases. Microbial community level association test, as a critical step to establish the connection between overall microbiome composition and an outcome of interest, has now been routinely performed in many studies. However, current microbiome association tests all focus on a single outcome.

View Article and Find Full Text PDF

In this paper, we consider a linear model in which the covariates are measured with errors. We propose a t-type corrected-loss estimation of the covariate effect, when the measurement error follows the Laplace distribution. The proposed estimator is asymptotically normal.

View Article and Find Full Text PDF

Genetic pleiotropy is when a single gene influences more than one trait. Detecting pleiotropy and understanding its causes can improve the biological understanding of a gene in multiple ways, yet current multivariate methods to evaluate pleiotropy test the null hypothesis that none of the traits are associated with a variant; departures from the null could be driven by just one associated trait. A formal test of pleiotropy should assume a null hypothesis that one or no traits are associated with a genetic variant.

View Article and Find Full Text PDF

This paper studies semiparametric regression analysis of panel count data, which arise naturally when recurrent events are considered. Such data frequently occur in medical follow-up studies and reliability experiments, for example. To explore the nonlinear interactions between covariates, we propose a class of partially linear models with possibly varying coefficients for the mean function of the counting processes with panel count data.

View Article and Find Full Text PDF

With an increasing number of causal genes discovered for complex human disorders, it is crucial to assess the genetic risk of disease onset for individuals who are carriers of these causal mutations and compare the distribution of age-at-onset with that in non-carriers. In many genetic epidemiological studies aiming at estimating causal gene effect on disease, the age-at-onset of disease is subject to censoring. In addition, some individuals' mutation carrier or non-carrier status can be unknown due to the high cost of in-person ascertainment to collect DNA samples or death in older individuals.

View Article and Find Full Text PDF

We consider a general semiparametric hazards regression model that encompasses the Cox proportional hazards model and the accelerated failure time model for survival analysis. To overcome the nonexistence of the maximum likelihood, we derive a kernel-smoothed profile likelihood function and prove that the resulting estimates of the regression parameters are consistent and achieve semiparametric efficiency. In addition, we develop penalized structure selection techniques to determine which covariates constitute the accelerated failure time model and which covariates constitute the proportional hazards model.

View Article and Find Full Text PDF

Event history studies occur in many fields including economics, medical studies, and social science. In such studies concerning some recurrent events, two types of data have been extensively discussed in the literature. One is recurrent event data that arise if study subjects are monitored or observed continuously.

View Article and Find Full Text PDF

Recurrent event data occur in many clinical and observational studies, and in these situations, there may exist a terminal event such as death that is related to the recurrent event of interest. In addition, sometimes more than one type of recurrent events may occur, that is, one may encounter multivariate recurrent event data with some dependent terminal event. For the analysis of such data, one must take into account the dependence among different types of recurrent events and that between the recurrent events and the terminal event.

View Article and Find Full Text PDF

Longitudinal data analysis is one of the most discussed and applied areas in statistics and a great deal of literature has been developed for it. However, most of the existing literature focus on the situation where observation times are fixed or can be treated as fixed constants. This paper considers the situation where these observation times may be random variables and more importantly, they may be related to the underlying longitudinal variable or process of interest.

View Article and Find Full Text PDF

In this article, we propose a class of Box-Cox transformation models for recurrent event data, which includes the proportional means models as special cases. The new model offers great flexibility in formulating the effects of covariates on the mean functions of counting processes while leaving the stochastic structure completely unspecified. For the inference on the proposed models, we apply a profile pseudo-partial likelihood method to estimate the model parameters via estimating equation approaches and establish large sample properties of the estimators and examine its performance in moderate-sized samples through simulation studies.

View Article and Find Full Text PDF

Recurrent event data occur in many clinical and observational studies (Cook and Lawless, Analysis of recurrent event data, 2007) and in these situations, there may exist a terminal event such as death that is related to the recurrent event of interest (Ghosh and Lin, Biometrics 56:554-562, 2000; Wang et al., J Am Stat Assoc 96:1057-1065, 2001; Huang and Wang, J Am Stat Assoc 99:1153-1165, 2004; Ye et al., Biometrics 63:78-87, 2007).

View Article and Find Full Text PDF

Interval-censored failure time data often arise in clinical trials and medical follow-up studies, and a few methods have been proposed for their regression analysis using various regression models (Finkelstein (1986); Huang (1996); Lin, Oakes, and Ying (1998); Sun (2006)). This paper proposes an estimating equation-based approach for regression analysis of interval-censored failure time data with the additive hazards model. The proposed approach is robust and applies to both noninformative and informative censoring cases.

View Article and Find Full Text PDF

This paper discusses regression analysis of multivariate current status failure time data (The Statistical Analysis of Interval-censoring Failure Time Data. Springer: New York, 2006), which occur quite often in, for example, tumorigenicity experiments and epidemiologic investigations of the natural history of a disease. For the problem, several marginal approaches have been proposed that model each failure time of interest individually (Biometrics 2000; 56:940-943; Statist.

View Article and Find Full Text PDF

This paper discusses regression analysis of panel count data that often arise in longitudinal studies concerning occurrence rates of certain recurrent events. Panel count data mean that each study subject is observed only at discrete time points rather than under continuous observation. Furthermore, both observation and follow-up times can vary from subject to subject and may be correlated with the recurrent events.

View Article and Find Full Text PDF

Variable selection is an important issue in all regression analysis and in this paper, we discuss this in the context of regression analysis of recurrent event data. Recurrent event data often occur in long-term studies in which individuals may experience the events of interest more than once and their analysis has recently attracted a great deal of attention (Andersen et al., Statistical models based on counting processes, 1993; Cook and Lawless, Biometrics 52:1311-1323, 1996, The analysis of recurrent event data, 2007; Cook et al.

View Article and Find Full Text PDF

This paper discusses multivariate interval-censored failure time data that occur when there exist several correlated survival times of interest and only interval-censored data are available for each survival time. Such data occur in many fields. One is tumorigenicity experiments, which usually concern different types of tumors, tumors occurring in different locations of animals, or together.

View Article and Find Full Text PDF

This paper considers joint analysis of current status and marker data using a threshold model based on first hitting times. A failure time is defined as the time at which a subject's latent health status process first decreases to zero. We extend the bivariate Wiener process model in Whitmore et al.

View Article and Find Full Text PDF