Thermo-reversible gels (such as gelatin) have a wide range of applications in the food and pharmaceutical fields. This work reports a thermo-reversible gel prepared with pea protein isolate fractionated using ionic strength-shifting method (I: 0.5 → 0.
View Article and Find Full Text PDFWhile significant progress has been made in enantioselective insertion of carbenes into heteroatom-hydrogen bonds, this chemistry is predominantly restricted to construction of carbon-based chirality. The asymmetric insertion of carbenes into P-H that delivers P-chiral products remains untouched. We herein report rhodium(I)-catalyzed enantioselective synthesis of P-chiral triarylphosphine oxides via asymmetric C-P coupling of a secondary phosphine oxide (SPO) with diazonaphthoquinone.
View Article and Find Full Text PDFChronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.
View Article and Find Full Text PDFInt J Biol Macromol
February 2025
By using protein-glutaminase (PG) deamidation, thermo-reversible gel of pork myofibrillar protein (PMP) can be prepared. This study aims to reveal the connection between PMP thermo-reversible gel and the coiled-coil. The research explores how the water-holding capacity and reversibility of these gels improve with increased deamidation time.
View Article and Find Full Text PDFA pair of enantiomers is known to have different biological activities. Two catalysts with opposite chirality are nearly always required to deliver both enantiomeric products. In this work, chiral rhodium(III) cyclopentadienyl complexes are repurposed as efficient catalysts for enantiodivergent and atroposelective hydroamination of sterically hindered alkynes.
View Article and Find Full Text PDFThe incorporation of fluorine atoms into three-dimensional sp-rich scaffolds represents an attractive tactic during bioisosteric evolution campaigns by endowing bioisosteric candidates with improved pharmacokinetic properties. Photo- or Lewis acid-mediated bicyclo[1.1.
View Article and Find Full Text PDFQuick and easy synthetic methods and highly efficient catalytic performance are equally important to anodic oxygen evolution reaction (OER) electrocatalysts for alkaline seawater electrolysis. Herein, we report a facile one-step route to in situ growing PO intercalated NiFe layered double hydroxides (NiFe-LDH) on Ni foam (denoted as NiFe-P/NF) by a room-temperature immersion for several minutes. This ultrafast approach transforms the NF surface into a rough PO intercalated NiFe-LDH overlayer, which demonstrates outstanding OER performance in both alkaline simulated and natural seawaters owing to good hydrophilic interface and the electrostatic repulsion of PO against Cl anions.
View Article and Find Full Text PDFChiral alpha-amino ketones have found extensive applications as functional molecules. A nickel-catalyzed, enantioselective, and fully intermolecular three-component 1,2-alkylacylation of -acyl enamides has been realized with tertiary alkyl bromides and carboxylic acid-derived electrophiles as the coupling reagents. This reductive coupling strategy is operationally simple, exhibiting broad substrate scope and excellent functional group tolerance using readily available starting materials and allowing rapid access to structurally complex α-amino ketone derivatives in high enantioselectivity.
View Article and Find Full Text PDFDistal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances.
View Article and Find Full Text PDFRh(III)-catalyzed direct oxidative C-H/C-H cross-coupling between -pyrimidylindoles and β-ketoesters is presented. Easily available β-ketoesters are used as an alkylating agent for the facile construction of all-carbon quaternary centers under mild conditions. The ester group in the product can undergo decarboxylation or decarboxylative amination.
View Article and Find Full Text PDFAxially chiral biaryls featuring a C-N axis are important functional molecules in diverse fields. The asymmetric Buchwald-Hartwig reaction represents a powerful strategy for these targets. Previous studies, however, have been predominantly restricted to intramolecular atroposelective coupling, likely due to the steric and entropic effects in the reductive elimination of Pd(II) species with sterically congested aryl and nitrogen groups.
View Article and Find Full Text PDFAtropisomeric indoles defined by a N─N axis are an important class of heterocycles in synthetic and medicinal chemistry and material sciences. However, they remain heavily underexplored due to limited synthetic methods and challenging stereocontrol over the short N─N bonds. Here, we report highly atroposelective access to N─N axially chiral indoles via the asymmetric Larock reaction.
View Article and Find Full Text PDFTransition metal-based electrocatalysts generally take place surface reconstruction in alkaline conditions, but little is known about how to improve the reconstruction to a highly active oxyhydroxide surface for an efficient and stable oxygen evolution reaction (OER). Herein, we develop a strategy to accelerate surface reconstruction by combining boron modification and cyclic voltammetry (CV) activation. Density functional theory calculations and in-situ/ex-situ characterizations indicate that both B-doping and electrochemical activation can reduce the energy barrier and contribute to the surface evolution into highly active oxyhydroxides.
View Article and Find Full Text PDFA highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity.
View Article and Find Full Text PDFEfficient intratumoral penetration is essential for nanomedicine to eradicate pancreatic tumors. Although nanomedicine can enter the perivascular space of pancreatic tumors, their access to distal tumor cells, aloof from the vessels, remains a formidable challenge. Here, we synthesized an acid-activatable macromolecular prodrug of floxuridine (FUDR)-poly(FUDR-ketal), engineered a micellar nanomedicine of FUDR, and intravenously co-administered the nanomedicine with the tumor-penetrating peptide iRGD for enhanced treatment of pancreatic tumor.
View Article and Find Full Text PDFSeawater electrolysis to generate hydrogen offers a clean, green, and sustainable solution for new energy. However, the catalytic activity and durability of anodic catalysts are plagued by the corrosion and competitive oxidation reactions of chloride in high concentrations. In this study, we find that the additive CrO anions in the electrolyte can not only promote the formation and stabilization of the metal oxyhydroxide active phase but also greatly mitigate the adverse effect of Cl on the anode.
View Article and Find Full Text PDFAlthough the elements that lead local governments to adopt sustainable development behaviors have been examined, the underlying processes that local governments adopt to accomplish green development behavior (GDB) lack systematic theoretical analysis. This study aims to investigate the determinants influencing local governments' implementation of GDB from the organizational internal and external perspectives. This study employed grounded theory to analyze the data and develop an influencing factor model of local government green development behavior (GDB-LG) after interviewing 53 Chinese local officials.
View Article and Find Full Text PDFTransition-metal-catalyzed cyclative coupling of 2-alkynylanilines provides a feasible routine for accessing functionalized indoles. Herein, a rhodium-catalyzed highly enantioselective addition of heteroarenium salts is presented, which is enabled by the nucleophilic cyclization of 2-alkynylanilines. It offers feasible protocols to access enantioenriched functionalized indoles tethered to 1,2-dihydropyridine and 1,2-dihydroquinoline motifs with excellent enantioselectivities.
View Article and Find Full Text PDFAxially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG (rac)=26.6-28.
View Article and Find Full Text PDFBridged isoxazolidines were synthesized via Rh(III)-catalyzed C-H allylation of α-aryl nitrones with 5-methylene-1,3-dioxan-2-one. The nitrone group serves as a directing group and 1,3-dipole in the C-H activation/[3 + 2] cycloaddition cascade, exhibiting excellent chemo- and stereoselectivity along with good functional group compatibility. The resulting skeletal structure was conveniently modified to produce a range of important chemical frameworks, and the protocol was applied to biologically active molecules.
View Article and Find Full Text PDFThe carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively.
View Article and Find Full Text PDFAlthough researchers have examined organizational sustainability practices, a specific interpretation of local government green development practices remains for supplemental analysis. This study conducted an empirical survey of 53 local officials from departments related to green development to understand the key processes and practices of green development behavior of local governments in China. The key findings indicate that the main stakeholders involved in the green development practices of Chinese local governments consist of enterprises and residents.
View Article and Find Full Text PDFDecarboxylative annulation of propargyl carbamates with benzamides has been realized via rhodium-catalyzed C-H bond activation under mild conditions, delivering two distinct classes of heterocycles in high efficiency and selectivity under substrate control. This protocol provides a direct synthetic method for the preparation of functionalized 1,8-naphthyridines and isoindolinones.
View Article and Find Full Text PDFTraumatic optic neuropathy (TON) is a severe condition characterized by retinal ganglion cell (RGC) death, often leading to irreversible vision loss, and the death of RGCs is closely associated with oxidative stress. Unfortunately, effective treatment options for TON are lacking. To address this, catalase (CAT) is encapsulated in a tannic acid (TA)/poly(ethylenimine)-crosslinked hollow nanoreactor (CAT@PTP), which exhibited enhanced anchoring in the retina due to TA-collagen adhesion.
View Article and Find Full Text PDF