J Am Chem Soc
September 2024
Halogen atom transfer (XAT) is a versatile method for generating carbon radicals. Recent interest has focused on α-aminoalkyl radicals as potential XAT reagents, previously reported to exhibit reactivity comparable to tin radicals. Utilizing an advanced time-resolved EPR technique, the XAT reactions between α-aminoalkyl radicals and organic halides were examined, allowing direct observation of the process through EPR spectroscopy and analysis of radical kinetics.
View Article and Find Full Text PDFMolecular photocatalysis has shown tremendous success in sustainable energy and chemical synthesis. However, visualizing the transient open-shell intermediates in photocatalysis is a significant and long-standing challenge. By employing our recently developed innovative time-resolved electron paramagnetic resonance technique, we directly observed all radicals and radical ions involved in the photocatalytic addition of pempidine to -butyl acrylate.
View Article and Find Full Text PDFA time-resolved electron paramagnetic resonance (TREPR) method with 40 ns time resolution and a high sensitivity suitable for the detection of short-lived radicals under thermal equilibrium is developed. The key is the introduction of a new detection technique named ultrawide single sideband phase sensitive detection (U-PSD) to the conventional continuous-wave EPR, which remarkably enhanced the sensitivity for the detection of broadband transient signals compared with the direct detection protocol. By repeatedly triggering a transient kinetic event f(t) (e.
View Article and Find Full Text PDFThe 3-Gen OLED materials employing thermally-activated delayed fluorescence (TADF) combine advantages of first two for high-efficiency and low-cost devices. Though urgently needed, blue TADF emitters have not met stability requirement for applications. It is essential to elucidate the degradation mechanism and identify the tailored descriptor for material stability and device lifetime.
View Article and Find Full Text PDFElectroadhesion displays provide controllable friction between the fingertip and screen. However, the change of contact condition causes variability in the produced friction. In this paper, we demonstrate a novel method for closed-loop control using current regulation to improve the precision of the electroadhesion force regardless of contact conditions.
View Article and Find Full Text PDFElectrochemical water splitting is a promising approach to produce hydrogen gas, but sluggish four-electron transfer of the oxygen evolution reaction (OER) severely limits the overall energy conversion efficiency of water splitting. Herein, as an excellent OER electrocatalyst, a technique of synthesizing Fe doped CoNiSe nanosheet (Fe-CoNiSe) whole series using CoFe prussian blue analog produced by Co-ZIF-L reaction as a template is proposed here. The introduction of iron ions promotes the redistribution of the cobalt-nickel charge density, which enhances the OER kinetics.
View Article and Find Full Text PDFCyclometalated iridium(III) complexes are frequently employed in organic light emitting diodes, and they are popular photocatalysts for solar energy conversion and synthetic organic chemistry. They luminesce from redox-active excited states that can have high triplet energies and long lifetimes, making them well suited for energy transfer and photoredox catalysis. Homoleptic tris(cyclometalated) iridium(III) complexes are typically very hydrophobic and do not dissolve well in polar solvents, somewhat limiting their application scope.
View Article and Find Full Text PDFMany photoactive metal complexes can act as electron donors or acceptors upon photoexcitation, but hydrogen atom transfer (HAT) reactivity is rare. We discovered that a typical representative of a widely used class of iridium hydride complexes acts as an H-atom donor to unactivated olefins upon irradiation at 470 nm in the presence of tertiary alkyl amines as sacrificial electron and proton sources. The catalytic hydrogenation of simple olefins served as a test ground to establish this new photo-reactivity of iridium hydrides.
View Article and Find Full Text PDFMulti-dimensions tactile displays, such as thermal and texture display, are desirable for enhancing perception while users experience virtual shopping such as touching a garment in virtual reality. Understanding the effect of one dimension on the other is fundamental for design of multi-dimensions tactile display. In this article, we report the effect of temperature on thresholds of voltage applied on an electrovibration tactile display.
View Article and Find Full Text PDFAtropisomeric 1,2-naphthylene scaffolds provide access to donor-acceptor compounds with helical oligomer-based bridges, and transient absorption studies revealed a highly unusual dependence of the electron-transfer rate on oligomer length, which is due to their well-defined secondary structure. Close noncovalent intramolecular contacts enable shortcuts for electron transfer that would otherwise have to occur over longer distances along covalent pathways, reminiscent of the behavior seen for certain proteins. The simplistic picture of tube-like electron transfer can describe this superposition of different pathways including both the covalent helical backbone, as well as noncovalent contacts, contrasting the wire-like behavior reported many times before for more conventional molecular bridges.
View Article and Find Full Text PDFElectrovibration has become one of the promising approaches for adding tactile feedback on touchscreen. Previous studies revealed that the normal force applied on the touchscreen by the finger affects significantly the electrostatic force. It is obvious that the normal force affects the electrostatic force if it changes the contact area between the finger and the touchscreen.
View Article and Find Full Text PDFThe hydrated electron is experiencing a renaissance as a superreductant in lab-scale reductions driven by light, both for the degradation of recalcitrant pollutants and for challenging chemical reactions. However, examples for its sustainable generation under mild conditions are scarce. By combining a water-soluble Ir catalyst with unique photochemical properties and an inexpensive diode laser as light source, we produce hydrated electrons through a two-photon mechanism previously thought to be unimportant for laboratory applications.
View Article and Find Full Text PDFPhotoinduced electron transfer across rigid rod-like oligo- p-phenylenes has been thoroughly investigated in the past, but their o-connected counterparts are yet entirely unexplored in this regard. We report on three molecular dyads comprised of a triarylamine donor and a Ru(bpy) (bpy =2,2'-bipyridine) acceptor connected covalently by 2 to 6 o-phenylene units. Pulsed excitation of the Ru(II) sensitizer at 532 nm leads to the rapid formation of oxidized triarylamine and reduced ruthenium complex via intramolecular electron transfer.
View Article and Find Full Text PDFPhotoinduced electron transfer in donor-sensitizer-acceptor compounds usually leads to simple electron-hole pairs, and photoredox catalysis typically relies on single-electron transfer (SET) events. This work reports on a molecular triad able to accumulate two electrons on a central dibenzo[1,2]dithiin moiety flanked by two peripheral Ru photosensitizers. Under continuous illumination, the doubly reduced form of the dibenzo[1,2]dithiin undergoes thiolate-disulfide exchange with an aliphatic disulfide substrate, thereby acting as a two-electron catalyst after two initial SET events with triethylamine at the Ru sensitizers.
View Article and Find Full Text PDFDesigning algorithmsfor rendering haptic texture on electrostatic tactile displays requires a quantitative understanding of human perception. In this paper, we report detection and discrimination thresholds for haptic gratings rendered on such displays based on the waveform and amplitude of the applied voltage. The haptic gratings consist of functions that describe the variation in voltage amplitude as a function of the position of finger on the display.
View Article and Find Full Text PDFTwo phenothiazine (PTZ) moieties were connected via naphthalene spacers to a central arene to result in stacked PTZ-arene-PTZ structure elements. Benzene and tetramethoxybenzene units served as central arenes mediating electronic communication between the two PTZ units. Based on cyclic voltammetry, UV/Vis-NIR absorption, EPR spectroscopy, and computational studies, the one-electron oxidized forms of the resulting compounds behave as class II organic mixed-valence species in which the unpaired electron is partially delocalized over both PTZ units.
View Article and Find Full Text PDFVisible light-driven reduction of imines to enantioenriched amines in aqueous solution is demonstrated for the first time. Excitation of a new water-soluble variant of the widely used [Ir(ppy)] (ppy = 2-phenylpyridine) photosensitizer in the presence of a cyclic imine affords a highly reactive α-amino alkyl radical that is intercepted by hydrogen atom transfer (HAT) from ascorbate or thiol donors to afford the corresponding amine. The enzyme monoamine oxidase (MAO-N-9) selectively catalyzes the oxidation of one of the enantiomers to the corresponding imine.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2018
The excitation of a Ru photosensitizer in the presence of ascorbic acid leads to the reduction of iminium ions to electron-rich α-aminoalkyl radical intermediates, which are rapidly converted into reductive amination products by thiol-mediated hydrogen atom transfer (HAT). As a result, the reductive amination of carbonyl compounds with amines by photoredox catalysis proceeds in good to excellent yields and with broad substrate scope and good functional group tolerance. The three key features of this work are 1) the rapid interception of electron-rich α-aminoalkyl radical intermediates by polarity-matched HAT in a photoredox reaction, 2) the method of reductive amination by photoredox catalysis itself, and 3) the application of this new method for temporally and spatially controlled reactions on a solid support, as demonstrated by the attachment of a fluorescent dye on an activated cellulose support by photoredox-catalyzed reductive amination.
View Article and Find Full Text PDFIn a molecular triad comprised of a central naphthalene diimide (NDI) unit flanked by two [Ru(bpy)] (bpy = 2,2'-bipyridine) sensitizers, NDI is formed after irradiation with visible light in deaerated CHCN in the presence of excess triethylamine. The mechanism for this electron accumulation involves a combination of photoinduced and thermal elementary steps. In a structurally related molecular pentad with two peripheral triarylamine (TAA) electron donors attached covalently to a central [Ru(bpy)]-NDI-[Ru(bpy)] core but no sacrificial reagents present, photoexcitation only leads to NDI (and TAA), whereas NDI is unattainable due to rapid electron transfer events counteracting charge accumulation.
View Article and Find Full Text PDFA meta-terphenyl unit was substituted with an isocyanide group on each of its two terminal aryls to afford a bidentate chelating ligand (CNArNC) that is able to stabilize chromium in its zerovalent oxidation state. The homoleptic Cr(CNArNC) complex luminesces in solution at room temperature, and its excited-state lifetime (2.2 ns in deaerated THF at 20 °C) is nearly 2 orders of magnitude longer than the current record lifetime for isoelectronic Fe(II) complexes, which are of significant interest as earth-abundant sensitizers in dye-sensitized solar cells.
View Article and Find Full Text PDFWe report the first homoleptic Mo(0) complex with bidentate isocyanide ligands, which exhibits metal-to-ligand charge transfer ((3) MLCT) luminescence with quantum yields and lifetimes similar to Ru(bpy)3 (2+) (bpy=2,2'-bipyridine). This Mo(0) complex is a very strong photoreductant, which manifests in its capability to reduce acetophenone with essentially diffusion-limited kinetics as shown by time-resolved laser spectroscopy. The application potential of this complex for photoredox catalysis was demonstrated by the rearrangement of an acyl cyclopropane to a 2,3-dihydrofuran, which is a reaction that requires a reduction potential so negative that even the well-known and strongly reducing Ir(2-phenylpyridine)3 photosensitizer cannot catalyze it.
View Article and Find Full Text PDFWith the continuous progress of society, increment of social pressure, people have paid little and little attentions to physical exercises and dietary necessity. Take Beijing, Shanghai, Guangzhou, Shenzhen, Shijiazhuang and Baotou university students as research objects, targeted at physical exercises time and dietary habits, it starts investigation. Make principal component analysis of investigation results, results indicates that cereal intake is principal component in dietary habits; strenuous exercise time and general physical exercise time are the principal components in physical exercise.
View Article and Find Full Text PDFThe kinetics of the hydride abstractions by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) from 13 C-H hydride donors (acyclic 1,4-dienes, cyclohexa-1,4-dienes, dihydropyridines), tributylstannane, triphenylstannane, and five borane complexes (amine-boranes, carbene-boranes) have been studied photometrically in dichloromethane solution at 20 °C. Analysis of the resulting second-order rate constants by the correlation log k2(20 °C) = sN(E + N) ( J. Am.
View Article and Find Full Text PDF