Correction for 'Microneedle-mediated delivery of MIL-100(Fe) as a tumor microenvironment-responsive biodegradable nanoplatform for O-evolving chemophototherapy' by Sulan Luo , , 2021, DOI: 10.1039/d1bm00888a.
View Article and Find Full Text PDFThe low oxygen level in tumors significantly reduces the antitumor efficacy of photodynamic therapy (PDT). The provision of O and monomeric hydrophobic photosensitizers (PSs) under physiological conditions would greatly help to shrink malignant tumors. We take advantage of the high porosity and multifunctionality of metal-organic frameworks (MOFs) to fabricate a simple all-in-one nanoplatform mediated by microneedle delivery to achieve synergistic O evolution and chemophototherapy.
View Article and Find Full Text PDFThe excessive colonization of () is responsible for the genesis of acne vulgaris, a common inflammatory disease of skin. However, the conventional anti-acne therapies are always limited by various side effects, drug resistance, and poor skin permeability. Microneedles (MNs) are emerging topical drug delivery systems capable of noninvasively breaking through the skin stratum corneum barrier to efficiently enhance the transdermal drug penetration.
View Article and Find Full Text PDFCutaneous melanoma is one of the most common malignant skin cancer with high lethality. Chemotherapy and photothermal therapy are important and extensively studied treatment modalities for melanoma. However, these therapies still face some challenges, which severely restrict their further applications, such as unsatisfactory efficacy of monotherapy, nonspecific uptake and release during drug delivery, and unexpected adverse effects from system administration.
View Article and Find Full Text PDFDrug Deliv Transl Res
February 2019
Microneedle arrays have emerged as an alternative method for transdermal drug delivery. Although micromolding using a centrifugation method is widely used to prepare microneedles in laboratory, few researchers were focused on manufacturing processes capable of facile scale-up. A novel female mold was initially designed in this study, namely double-penetration female mold (DPFM) with the pinpoints covered by waterproof breather membrane which was beneficial to reduce the influence of gas resistance and solution viscosity.
View Article and Find Full Text PDFUltrafine particle processing system (UPPS) was developed previously by our group to provide a new solution to microsphere fabrication. The UPPS was supposed to possess many featured advantages, but the microsphere formation mechanism during UPPS processing was still unknown. The objective of this study was to perform the formation mechanism investigation and in vitro evaluation on risperidone-containing poly(d, l-lactic-co-glycolic acid) microspheres (RIS-PLGA MS) fabricated by UPPS.
View Article and Find Full Text PDFNanoscale Res Lett
December 2014
To improve its poor aqueous solubility and stability, the potential chemotherapeutic drug quercetin was encapsulated in soluplus polymeric micelles by a modified film dispersion method. With the encapsulation efficiency over 90%, the quercetin-loaded polymeric micelles (Qu-PMs) with drug loading of 6.7% had a narrow size distribution around mean size of 79.
View Article and Find Full Text PDFThe objective of this study was to prepare silk fibroin SF microspheres containing the enhanced green fluorescent protein (EGFP) by using a novel ultra-fine particle processing system (UPPS) and to evaluate the microspheres as possible carriers for long-term delivery of sensitive biologicals. The drug content, encapsulation efficiency, and in vitro release were evaluated by Microplate Absorbance Reader. The particle size distribution and morphology of the microspheres were analyzed by Malvern Master Sizer 2000 and scanning electron microscopy.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the transarterial chemoembolic agent based on docetaxel-loaded phytantriol cubic phase precursor (DTX PCPP) by in vitro cytotoxicity study and in vivo evaluation of antitumor efficacy as well as the histological examination. The methythiazolyl tereazolium bromide assay in Hep G2 cell line revealed that DTX PCPP generated high cytotoxicity by causing cell apoptosis and G2/M phase arrest. In vivo studies conducted in rabbits bearing VX2 tumors, which were treated with DTX PCPP, used as a transarterial chemoembolic agent, showed a significant antitumor efficacy and prominent higher DTX concentrations in tumor and liver than those in other organs.
View Article and Find Full Text PDFAAPS PharmSciTech
September 2010
The purpose of this study was to design and investigate the transdermal controlled release cubic phase gels containing capsaicin using glycerol monooleate (MO), propylene glycol (1,2-propanediol, PG), and water. Three types of cubic phase gels were designed based on the ternary phase diagram of the MO-PG-water system, and their internal structures were confirmed by polarizing light microscopy (PLM) and small-angle X-ray scattering (SAXS). Release results showed the cubic phase gels could provide a sustained system for capsaicin, while the initial water content in the gels was the major factor affecting the release rate.
View Article and Find Full Text PDFObjective: The purpose of this investigation was to introduce a new concept of admixing coated pellets with excipients to obtain a segregation-free combination of pellet-containing granules and cushioning granules during mixing and compression.
Methods: Acrylic polymeric-coated pellets were granulated by centrifugal granulation method with excipients; then, the pellet-containing granules were compacted into tablets with the cushioning granules, which were prepared in mixer or fluidized bed-granulator. Tablets were also made in a traditional method by directly compressing the mixtures of coated pellets and cushioning granules for control.