Publications by authors named "Xingting Guo"

The manipulation of cell identity by reprograming holds immense potential in regenerative medicine, but is often limited by the inefficient acquisition of fully functional cells. This problem can potentially be resolved by better understanding the reprogramming process using in vivo genetic models, which are currently scarce. Here we report that both enterocytes (ECs) and enteroendocrine cells (EEs) in adult Drosophila midgut show a surprising degree of cell plasticity.

View Article and Find Full Text PDF

Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade".

View Article and Find Full Text PDF

Enteroendocrine cells (EECs) in both invertebrates and vertebrates derive from intestinal stem cells (ISCs) and are scattered along the digestive tract, where they function in sensing various environmental stimuli and subsequently secrete neurotransmitters or neuropeptides to regulate diverse biological and physiological processes. To fulfill these functions, EECs are specified into multiple subtypes that occupy specific gut regions. With advances in single-cell technology, organoid culture experimental systems, and CRISPR/Cas9-mediated genomic editing, rapid progress has been made toward characterization of EEC subtypes in mammals.

View Article and Find Full Text PDF

Balanced stem cell self-renewal and differentiation is essential for maintaining tissue homeostasis, but the underlying mechanisms are poorly understood. Here, we identified the transcription factor SRY-related HMG-box (Sox) 100B, which is orthologous to mammalian Sox8/9/10, as a common target and central mediator of the EGFR/Ras and JAK/STAT signaling pathways that coordinates intestinal stem cell (ISC) proliferation and differentiation during both normal epithelial homeostasis and stress-induced intestinal repair in Drosophila. The two stress-responsive pathways directly regulate Sox100B transcription via two separate enhancers.

View Article and Find Full Text PDF

Intestinal stem cells (ISCs) are able to generate gut-specific enterocytes, as well as neural-like enteroendocrine cells. It is unclear how the tissue identity of the ISC lineage is regulated to confer cell-lineage fidelity. Here, we show that, in adult Drosophila midgut, loss of the transcriptional repressor Tramtrack in ISCs causes a self-renewal program switch to neural stem cell (NSC)-like, and that switch drives neuroendocrine tumor development.

View Article and Find Full Text PDF

Enteroendocrine cells (EEs) in the intestinal epithelium have important endocrine functions, yet this cell lineage exhibits great local and regional variations that have hampered detailed characterization of EE subtypes. Through single-cell RNA-sequencing analysis, combined with a collection of peptide hormone and receptor knockin strains, here we provide a comprehensive analysis of cellular diversity, spatial distribution, and transcription factor (TF) code of EEs in adult Drosophila midgut. We identify 10 major EE subtypes that totally produced approximately 14 different classes of hormone peptides.

View Article and Find Full Text PDF

Intestinal stem cell (ISC) differentiation in the Drosophila midgut requires Delta/Notch-mediated lateral inhibition, which separates the fate of ISCs from differentiating enteroblasts (EBs). Although a canonical Notch signaling cascade is involved in the lateral inhibition, its regulation at the transcriptional level is still unclear. Here we show that the establishment of lateral inhibition between ISC-EB requires two evolutionarily conserved transcriptional co-repressors Groucho (Gro) and C-terminal binding protein (CtBP) that act differently.

View Article and Find Full Text PDF

In adult Drosophila midgut, intestinal stem cells (ISCs) periodically produce progenitor cells that undergo a binary fate choice determined primarily by the levels of Notch activity that they receive, before terminally differentiating into enterocytes (ECs) or enteroendocrine (EE) cells. Here we identified Ttk69, a BTB domain-containing transcriptional repressor, as a master repressor of EE cell specification in the ISC lineages. Depletion of ttk69 in progenitor cells induced ISC proliferation and caused all committed progenitor cells to adopt EE fate, leading to the production of supernumerary EE cells in the intestinal epithelium.

View Article and Find Full Text PDF

Quiescent, multipotent gastric stem cells (GSSCs) in the copper cell region of adult Drosophila midgut can produce all epithelial cell lineages found in the region, including acid-secreting copper cells, interstitial cells and enteroendocrine cells, but mechanisms controlling their quiescence and the ternary lineage differentiation are unknown. By using cell ablation or damage-induced regeneration assays combined with cell lineage tracing and genetic analysis, here we demonstrate that Delta (Dl)-expressing cells in the copper cell region are the authentic GSSCs that can self-renew and continuously regenerate the gastric epithelium after a sustained damage. Lineage tracing analysis reveals that the committed GSSC daughter with activated Notch will invariably differentiate into either a copper cell or an interstitial cell, but not the enteroendocrine cell lineage, and loss-of-function and gain-of-function studies revealed that Notch signaling is both necessary and sufficient for copper cell/interstitial cell differentiation.

View Article and Find Full Text PDF