The efficiencies of thermal desorption and oxidation process in engineering soil remediation are to some extent limited due to the huge loss of heat to the soil or underground water or mass transfer resistance in the soil. To enhance the oxidation and improve the energy utilization. Herein, the thermal desorption process and the oxidation process (by ozone) are combined together to remediate the organic contaminated model soil (take the 2,4-dimethylaniline (2,4-DMA) as pollutant).
View Article and Find Full Text PDFSoil remediation has been considered as one of the most difficult pollution treatment tasks due to its high complexity in contaminants, geological conditions, usage, urgency, etc. The diversity in remediation technologies further makes quick selection of suitable remediation schemes much tougher even the site investigation has been done. Herein, a sustainable decision support hierarchical model has been developed to select, evaluate and determine preferred soil remediation schemes comprehensively based on modified analytic hierarchy process (MAHP).
View Article and Find Full Text PDFIn this study, we investigate specifically the influence of soil grain size and water content on the degradation of n-alkane fractions and the formation of aldehydes and carboxylic acid during ozonation. 15 g of quartz sand spiked with diesel (25 g kg(-1)) were exposed to ozone for 20 h at concentrations of 10, 30 and 50 mg L(-1), respectively. Results indicated that ozonation of the n-alkanes in fine grain size sand (0.
View Article and Find Full Text PDF