IEEE J Biomed Health Inform
November 2024
Integrating diverse biomedical knowledge information is essential to enhance the accuracy and efficiency of medical diagnoses, facilitate personalized treatment plans, and ultimately improve patient outcomes. However, Biomedical Information Integration (BII) faces significant challenges due to variations in terminology and the complex structure of entity descriptions across different datasets. A critical step in BII is biomedical entity alignment, which involves accurately identifying and matching equivalent entities across diverse datasets to ensure seamless data integration.
View Article and Find Full Text PDFMulticast communication technology is widely applied in wireless environments with a high device density. Traditional wireless network architectures have difficulty flexibly obtaining and maintaining global network state information and cannot quickly respond to network state changes, thus affecting the throughput, delay, and other QoS requirements of existing multicasting solutions. Therefore, this paper proposes a new multicast routing method based on multiagent deep reinforcement learning (MADRL-MR) in a software-defined wireless networking (SDWN) environment.
View Article and Find Full Text PDFFor Orthogonal Frequency Division Multiplexing (OFDM) systems, the most significant problem is the peak-to-average power ratio. The utilisation of partial transmission sequence, often known as PTS, is an efficient method for reducing PAPR. When it comes to minimizing the peak-to-average power ratio (PAPR) in Orthogonal Frequency Division Multiplexing (OFDM) Systems, PTS is one of the most effective approaches that may be used.
View Article and Find Full Text PDFIn high-dimensional space, most multi-objective optimization algorithms encounter difficulties in solving many-objective optimization problems because they cannot balance convergence and diversity. As the number of objectives increases, the non-dominated solutions become difficult to distinguish while challenging the assessment of diversity in high-dimensional objective space. To reduce selection pressure and improve diversity, this article proposes a many-objective evolutionary algorithm based on dual selection strategy (MaOEA/DS).
View Article and Find Full Text PDFRestructuring Particle Swarm Optimization (RPSO) algorithm has been developed as an intelligent approach based on the linear system theory of particle swarm optimization (PSO). It streamlines the flow of the PSO algorithm, specifically targeting continuous optimization problems. In order to adapt RPSO for solving discrete optimization problems, this paper proposes the binary Restructuring Particle Swarm Optimization (BRPSO) algorithm.
View Article and Find Full Text PDFDue to rapidly developing technology and new research innovations, privacy and data preservation are paramount, especially in the healthcare industry. At the same time, the storage of large volumes of data in medical records should be minimized. Recently, several types of research on lossless medically significant data compression and various steganography methods have been conducted.
View Article and Find Full Text PDFIdentifying the right accessories for installing the dental implant is a vital element that impacts the sustainability and the reliability of the dental prosthesis when the medical case of a patient is not comprehensive. Dentists need to identify the implant manufacturer from the x-ray image to determine further treatment procedures. Identifying the manufacturer is a high-pressure task under the scaling volume of patients pending in the queue for treatment.
View Article and Find Full Text PDFAutonomous Systems (ASs) that work in the open, dynamic environment are required to share their data entities and semantics to implement the co-operations. Typically, AS's data schemas and semantics are described via ontology. Since ASs need to maintain their autonomy and conceptual specificity, their ontologies might define one concept with different terms or in different contexts, which yields the heterogeneity issue and hampers their co-operations.
View Article and Find Full Text PDFMetaheuristic algorithms are widely employed in modern engineering applications because they do not need to have the ability to study the objective function's features. However, these algorithms may spend minutes to hours or even days to acquire one solution. This paper presents a novel efficient Mahalanobis sampling surrogate model assisting Ant Lion optimization algorithm to address this problem.
View Article and Find Full Text PDFSmart Environment (SE) focuses on the initiatives for healthy living, where ecological issues and biodiversity play a vital role in the environment and sustainability. To manage the knowledge on ecology and biodiversity and preserve the ecosystem and biodiversity simultaneously, it is necessary to align the data entities in different ecology and biodiversity ontologies. Since the problem of Ecology and Biodiversity Ontology Alignment (EBOA) is a large-scale optimization problem with sparse solutions, finding high-quality EBOA is an open challenge.
View Article and Find Full Text PDFTo integrate massive amounts of heterogeneous biomedical data in biomedical ontologies and to provide more options for clinical diagnosis, this work proposes an adaptive Multi-modal Multi-Objective Evolutionary Algorithm (aMMOEA) to match two heterogeneous biomedical ontologies by finding the semantically identical concepts. In particular, we first propose two evaluation metrics on the alignment's quality, which calculate the alignment's statistical and its logical features, i.e.
View Article and Find Full Text PDFPeerJ Comput Sci
November 2021
Sensor ontologies formally model the core concepts in the sensor domain and their relationships, which facilitates the trusted communication and collaboration of Artificial Intelligence of Things (AIoT). However, due to the subjectivity of the ontology building process, sensor ontologies might be defined by different terms, leading to the problem of heterogeneity. In order to integrate the knowledge of two heterogeneous sensor ontologies, it is necessary to determine the correspondence between two heterogeneous concepts, which is the so-called ontology matching.
View Article and Find Full Text PDFSensors have been growingly used in a variety of applications. The lack of semantic information of obtained sensor data will bring about the heterogeneity problem of sensor data in semantic, schema, and syntax levels. To solve the heterogeneity problem of sensor data, it is necessary to carry out the sensor ontology matching process to determine correspondences among heterogeneous sensor concepts.
View Article and Find Full Text PDFCognitive green computing (CGC) dedicates to study the designing, manufacturing, using and disposing of computers, servers and associated subsystems with minimal environmental damage. These solutions should provide efficient mechanisms for maximizing the efficiency of use of computing resources. Evolutionary algorithm (EA) is a well-known global search algorithm, which has been successfully used to solve various complex optimization problems.
View Article and Find Full Text PDFSensors (Basel)
April 2020
Semantic Sensor Web (SSW) links the semantic web technique with the sensor network, which utilizes sensor ontology to describe sensor information. Annotating sensor data with different sensor ontologies can be of help to implement different sensor systems' inter-operability, which requires that the sensor ontologies themselves are inter-operable. Therefore, it is necessary to match the sensor ontologies by establishing the meaningful links between semantically related sensor information.
View Article and Find Full Text PDFThe fundamental utility of the Large-Scale Visual Sensor Networks (LVSNs) is to monitor specified events and to transmit the detected information back to the sink for achieving the data aggregation purpose. However, the events of interest are usually not uniformly distributed but frequently detected in certain regions in real-world applications. It implies that when the events frequently picked up by the sensors in the same region, the transmission load of LVSNs is unbalanced and potentially cause the energy hole problem.
View Article and Find Full Text PDFDue to continuous evolution of biomedical data, biomedical ontologies are becoming larger and more complex, which leads to the existence of many overlapping information. To support semantic inter-operability between ontology-based biomedical systems, it is necessary to identify the correspondences between these information, which is commonly known as biomedical ontology matching. However, it is a challenge to match biomedical ontologies, which dues to: (1) biomedical ontologies often possess tens of thousands of entities, (2) biomedical terminologies are complex and ambiguous.
View Article and Find Full Text PDFComput Intell Neurosci
December 2018
Over the recent years, ontologies are widely used in various domains such as medical records annotation, medical knowledge representation and sharing, clinical guideline management, and medical decision-making. To implement the cooperation between intelligent applications based on biomedical ontologies, it is crucial to establish correspondences between the heterogeneous biomedical concepts in different ontologies, which is so-called biomedical ontology matching. Although Evolutionary algorithms (EAs) are one of the state-of-the-art methodologies to match the heterogeneous ontologies, huge memory consumption, long runtime, and the bias improvement of the solutions hamper them from efficiently matching biomedical ontologies.
View Article and Find Full Text PDFThis paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index.
View Article and Find Full Text PDFIEEE Trans Cybern
December 2016
Research on multiobjective optimization problems becomes one of the hottest topics of intelligent computation. In order to improve the search efficiency of an evolutionary algorithm and maintain the diversity of solutions, in this paper, the learning automata (LA) is first used for quantization orthogonal crossover (QOX), and a new fitness function based on decomposition is proposed to achieve these two purposes. Based on these, an orthogonal evolutionary algorithm with LA for complex multiobjective optimization problems with continuous variables is proposed.
View Article and Find Full Text PDF