Publications by authors named "Xingshuai Ma"

Mitogen-activated protein kinase (MAPK) cascades have been discovered to play a fundamental role in regulating organ abscission. However, the identity of protein substrates targeted by MAPK cascades, as well as whether the role of MAPK protein cascades in the abscission process is conserved across different plant species, remain unknown. Here, the role of homologs of MPK3 and MPK6 in regulating fruit abscission were characterized in litchi.

View Article and Find Full Text PDF

At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission.

View Article and Find Full Text PDF

MicroRNA482/2118 (miR482/2118) is a 22-nt miRNA superfamily, with conserved functions in disease resistance and plant development. It usually instigates the production of phased small interfering RNAs (phasiRNAs) from its targets to expand or reinforce its silencing effect. Using a new high-quality reference genome sequence and comprehensive small RNA profiling, we characterized a newly evolved regulatory pathway of miR482/2118 in litchi.

View Article and Find Full Text PDF

Phytohormone ethylene is well-known in positive modulation of plant organ abscission. However, the molecular mechanism underlying ethylene-induced abscission remains largely unknown. Here, we identified an ethylene-responsive factor, LcERF10, as a key regulatory gene in litchi fruitlet abscission.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) have been emerging as a key regulator in plant organ abscission. However, the mechanism underlying the regulation of ROS homeostasis in the abscission zone (AZ) is not completely established. Here, we report that a DOF (DNA binding with one finger) transcription factor LcDOF5.

View Article and Find Full Text PDF

Large and premature organ abscission may limit the industrial development of fruit crops by causing serious economic losses. It is well accepted that ethylene (ET) is a strong inducer of organ abscission in plants. However, the mechanisms underlying the control of organ abscission by ET are largely unknown.

View Article and Find Full Text PDF

Organ abscission in plants requires the hydrolysis of cell wall components, mainly including celluloses, pectins, and xyloglucans. However, how the genes that encode those hydrolytic enzymes are regulated and their function in abscission remains unclear. Previously we revealed that two cellulase genes LcCEL2/8 and two polygalacturonase genes LcPG1/2 were responsible for the degradation of celluloses and pectins, respectively, during fruitlet abscission in litchi.

View Article and Find Full Text PDF

Abscission in plants is tightly controlled by multiple phytohormones and the expression of various genes. However, whether the plant hormone brassinosteroids (BRs) are involved in this process is largely unknown. Here, we found that exogenous application of BRs reduced the ethylene-induced fruitlet abscission of litchi due to lower ethylene (ET) production and suppressed the expression of the ethylene biosynthetic genes LcACS1/4 and LcACO2/3 in the fruitlet abscission zone (FAZ).

View Article and Find Full Text PDF

Fruit crops are subject to precocious fruit abscission, during which the phytohormone ethylene (ET) acts as a major positive regulator. However, the molecular basis of ET-induced fruit abscission remains poorly understood. Here, we show that two ETHYLENE INSENSITIVE 3-like (EIL) homologs in litchi, LcEIL2 and LcEIL3, play a role in ET-activated fruitlet abscission.

View Article and Find Full Text PDF

Abscission is triggered by multiple environmental and developmental cues, including endogenous plant hormones. KNOTTED-LIKE HOMEOBOX (KNOX) transcription factors (TFs) play an important role in controlling abscission in plants. However, the underlying molecular mechanism of KNOX TFs in abscission is largely unknown.

View Article and Find Full Text PDF

Abnormal fruitlet abscission is a limiting factor in the production of litchi, an economically important fruit in Southern Asia. Both ethylene and abscisic acid (ABA) induce organ abscission in plants. Although ACS/ACO and NCED genes are known to encode key enzymes required for ethylene and ABA biosynthesis, respectively, the transcriptional regulation of these genes is unclear in the process of plant organ shedding.

View Article and Find Full Text PDF

Cellulases play important roles in the shedding of plant organs; however, little is yet known about the functions of cellulase genes during the process of organ abscission. Abnormal fruitlet abscission is a serious problem in the production of litchi (Litchi chinensis), an economically important fruit widely grown in South Asia. In this study, two abscission-accelerating treatments (carbohydrate stress and application of ethephon) were evaluated in litchi fruitlets.

View Article and Find Full Text PDF