Publications by authors named "Xingshu Wang"

Article Synopsis
  • The paper discusses the growing use of robots in milling processes and highlights challenges like high temperature at the tool's front that affect tool life and machining quality.
  • It introduces a new model using Gated Convolutional Recurrent Neural Network (CNN-GRU) to solve the inverse heat conduction problem for accurately reconstructing the tool's temperature field during milling.
  • The proposed model utilizes knowledge distillation to enhance speed and accuracy, demonstrating strong performance with low error rates, even under noisy conditions, proving its effectiveness in improving robotic milling precision.
View Article and Find Full Text PDF

Zinc bioavailability with the presence of other elements in wheat grains might be affected by fertilizers. A long-term field experiment was conducted to examine effects of N fertilizer on Zn bioavailability in wheat grain tissues, with changes in the concentrations, distribution, and speciation of Zn as well as P and sulfur S via synchrotron-based technology. Results showed that addition of N fertilizer was associated with changes in Zn concentrations and distributions in grain tissues, especially in the crease region and endosperm.

View Article and Find Full Text PDF

Using a short-wave infrared (SWIR) camera to improve daytime star detection ability has become a trend for near-ground star trackers. However, the noise of SWIR star images greatly decreases the accuracy of the attitude measurement results. Aiming at a real-time application of the star tracker, an adaptive section non-uniformity correction method based on the two-point correction algorithm for SWIR star images is proposed.

View Article and Find Full Text PDF

The white top-hat transformation has been widely used in small bright target extraction. It usually applies an erosion operation to remove the target and then a dilation operation to recover the intensity of the processed image. A bright target will be extracted by subtracting the opening operation (erosion followed by dilation) from the raw image.

View Article and Find Full Text PDF

Increasing iron (Fe) and zinc (Zn) concentrations in crop grains with high yield is an effective measure to ensure food supply and alleviate mineral malnutrition in humans. Micronutrient concentrations in grains depend on not only their availability in soils but also their uptake in roots and translocation to shoots and grains. In this three-year field study, we investigated genotypic variation in Fe and Zn uptake and translocation within six wheat cultivars and examined in detail Fe and Zn distributions in various tissues of two cultivars with similar high yield but different grain Fe and Zn concentrations using synchrotron micro-X-ray fluorescence.

View Article and Find Full Text PDF

Star tracker is the most precise attitude measuring device, and its advantages include a high resolution and high update rate. Star centroid extraction, which is a very time-consuming process, has great influence on the attitude update rate. This paper proposes a real-time star centroid extraction algorithm based on a field programmable gate array.

View Article and Find Full Text PDF

Improving the concentration and bioavailability of zinc (Zn) in cereal grains is an important way to solve the problem of Zn deficiency in human body. The bioavailability of Zn is related to both its distribution and speciation in grains. In the current study, we examined the differences of Zn concentration, distribution, and speciation within grains among wheat cultivars with similar high grain yield but contrasting grain Zn concentration using synchrotron micro X-ray fluorescence (μ-XRF) and X-ray absorption near-edge structure (XANES).

View Article and Find Full Text PDF

An effective solution to global human zinc (Zn) deficiency is Zn biofortification of staple food crops, which has been hindered by the low available Zn in calcareous soils worldwide. Many culturable soil microbes have been reported to increase Zn availability in the laboratory, while the status of these microbes in fields and whether there are unculturable Zn-mobilizing microbes remain unexplored. Here, we use the culture-independent metagenomic sequencing to investigate the rhizosphere microbiome of three high-Zn (HZn) and three low-Zn (LZn) wheat cultivars in a field experiment with calcareous soils.

View Article and Find Full Text PDF

The physiological disorders in humans resulting from the excess dietary intake of manganese (Mn) via whole-grain food has attracted considerable attention. However, the speciation and bioavailability of Mn in wheat grains and their response to different phosphorus (P) fertilization rates are still unclear. In the current study, using a long-term field trial with P application rates of 0, 21.

View Article and Find Full Text PDF

The stellar/inertial integrated navigation system, which combines the inertial navigation system (INS) and the star tracker, can restrain the accumulated INS errors. In the traditional loosely coupled stellar/inertial integration method, the star tracker needs to observe more than two navigation stars on an image for attitude determination and to use the attitude information as the observation to estimate the systematic errors of the INS. However, under strong background radiation conditions, the star number in the field of view (FOV) usually drops below 3; thus, the loosely coupled method fails to work.

View Article and Find Full Text PDF

A star tracker should be well calibrated before it is equipped in order to achieve high accuracy. There exists, however, the coupling problem between the internal and external parameters for most commonly used laboratory calibration methods, which affect the star tracker's performance. We theoretically analyze the major aspects of the coupling mechanism based on the star tracker laboratory calibration model, which means the coupling between the principal point and the installation angle.

View Article and Find Full Text PDF

When applied inside Earth's atmosphere, the star tracker is sensitive to sky background produced by atmospheric scattering and stray light. The shot noise induced by the strong background reduces star detection capability and even makes it completely out of operation. To improve the star detection capability, an attitude-correlated frames adding (ACFA) approach is proposed in this paper.

View Article and Find Full Text PDF

This paper investigates the attitude estimation errors caused by the deflections of vertical (DOV) in the case of a rotational inertial navigation system (INS) integrated with a global satellite navigation system (GNSS). It has been proved theoretically and experimentally that the DOV can introduce a tilt error to the INS/GNSS integration, whereas less attention has been given to its effect to the heading estimation. In fact, due to the intercoupling characteristic of attitude errors, the heading estimation of an INS/GNSS integrated navigation system can also be affected.

View Article and Find Full Text PDF

Carried on the deck of the satellite maritime tracking and control ship, Yuan Wang 6, we have conducted a long-term on-ship dynamic experiment for a star sensor in the South Pacific. Motion-blurred star images of the star sensor obtained under different dynamic conditions are processed by our previously proposed region confined restoration method method, after which the SNR of the motion-blurred star images and the identification rate of the star sensor have been improved remarkably. With the attitude-correlated frames approach, the random noise aroused by the motion of the ship is reduced further.

View Article and Find Full Text PDF

The integration of a star tracker and gyroscope units (GUs) can take full advantage of the benefits of each, and provide continuous and accurate attitude information with a high update rate. The systematic error calibration of the integrated system is a crucial step to guarantee its attitude accuracy. In this paper, a comprehensive calibration method for the star tracker and GUs integrated system is proposed from a global perspective.

View Article and Find Full Text PDF

Due to the temperature delay effect, the coefficients of the traditional ring laser gyroscope's (RLG) bias temperature model usually change with environmental temperature. In order to improve the applicability of the temperature model in complex temperature-varying environments, a modified RLG bias modeling method based on the temperature delay effect is proposed. The time series model (TSM), whose coefficients are independent of the environmental temperature variation, is established through theoretical analysis according to the temperature delay effect.

View Article and Find Full Text PDF

Under dynamic conditions, the centroiding accuracy of the motion-blurred star image decreases and the number of identified stars reduces, which leads to the degradation of the attitude accuracy of the star sensor. To improve the attitude accuracy, a region-confined restoration method, which concentrates on the noise removal and signal to noise ratio (SNR) improvement of the motion-blurred star images, is proposed for the star sensor under dynamic conditions. A multi-seed-region growing technique with the kinematic recursive model for star image motion is given to find the star image regions and to remove the noise.

View Article and Find Full Text PDF

The attitude accuracy of a star sensor decreases rapidly when star images become motion-blurred under dynamic conditions. Existing techniques concentrate on a single frame of star images to solve this problem and improvements are obtained to a certain extent. An attitude-correlated frames (ACF) approach, which concentrates on the features of the attitude transforms of the adjacent star image frames, is proposed to improve upon the existing techniques.

View Article and Find Full Text PDF

We propose a precise rolling angle measurement for a collimator to extend its application in 3D angular deformation measurement, with performance significantly superior to that of the traditional 2D technique. The rolling angle measurement is realized by taking full advantage of the point array image, which is projected in terms of the collimated beam. The measurement error is estimated according to the proposed algorithm.

View Article and Find Full Text PDF

A new method for dynamic measurement of deflections of the vertical (DOV) is proposed in this paper. The integration of an inertial navigation system (INS) and global navigation satellite system (GNSS) is constructed to measure the body's attitude with respect to the astronomical coordinates. Simultaneously, the attitude with respect to the geodetic coordinates is initially measured by a star sensor under quasi-static condition and then maintained by the laser gyroscope unit (LGU), which is composed of three gyroscopes in the INS, when the vehicle travels along survey lines.

View Article and Find Full Text PDF