Introduction: Achilles tendinopathy (AT) is a prevalent musculoskeletal disorder closely linked to oxidative stress. Existing evidence suggests a potential link between circadian clock rhythms and oxidative stress. However, the precise role of the circadian clock in the progression and treatment of AT remains unclear.
View Article and Find Full Text PDFThe green concretes industry benefits from utilizing gel to replace parts of the cement in concretes. However, measuring the compressive strength of geo-polymer concretes (CSGPoC) needs a significant amount of work and expenditure. Therefore, the best idea is predicting CSGPoC with a high level of accuracy.
View Article and Find Full Text PDFOsteosarcoma (OS) is considered the most frequent type of primary malignant bone tumor. Currently, radiotherapy, photodynamic (PDT), and other therapies for osteosarcoma are limited by tumor hypoxia and single efficacy and serve side-effects. Herein, we reported a microalgal drug delivery system (SpiD), doxorubicin (DOX)-loaded (Spi) for OS therapy.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common form of arthritis. However, the exact pathogenesis remains unclear. Emerging evidence shows that N6-methyladenosine (mA) modification may have an important role in OA pathogenesis.
View Article and Find Full Text PDFBMC Biotechnol
September 2023
Background: Cartilage defects are common sports injuries without significant treatment. Articular cartilage with inferior regenerative potential resulted in the poor formation of hyaline cartilage in defects. Acellular matrix scaffolds provide a microenvironment and biochemical properties similar to those of native tissues and are widely used for tissue regeneration.
View Article and Find Full Text PDFPostoperative Surgical Site Infections (SSIs) pose significant challenges to recovery after joint arthroplasty. This systematic review and meta-analysis aim to compare the incidence of SSIs after knee or hip arthroplasty under Spinal Anaesthesia (SA) versus general anaesthesia (GA). We conducted the systematic review and meta-analysis following the PRISMA guidelines, analysing data from 15 studies selected from PubMed, Embase, Web of Science, and Cochrane Library up to May 16, 2023.
View Article and Find Full Text PDFChondrocytes (CHs) in cartilage undergo several detrimental events during the development of osteoarthritis (OA). However, the mechanism underlying CHs regeneration involved in pathogenesis is largely unknown. The aim of this study was to explore the underlying mechanism of regeneration of CHs involved in the pathological condition and the potential therapeutic strategies of cartilage repair.
View Article and Find Full Text PDFLarge bone defects resulting from fractures and disease are a major clinical challenge, being often unable to heal spontaneously by the body's repair mechanisms. Lines of evidence have shown that hypoxia-induced overproduction of ROS in bone defect region has a major impact on delaying bone regeneration. However, replenishing excess oxygen in a short time cause high oxygen tension that affect the activity of osteoblast precursor cells.
View Article and Find Full Text PDFOsteoarthritis (OA) is a low-level inflammatory disease in which synovial macrophage M1 polarization exacerbates the progression of synovitis and OA. Notedly, the ROS (reactive oxygen species) level in macrophages is intimately implicated in macrophage M1 polarization. TRPV4 (transient receptor potential channel subfamily V member 4), as an ion channel, plays a pivotal role in oxidative stress and inflammation.
View Article and Find Full Text PDFThe fibrocartilage presented on the joint surface was caused by cartilage injury or degeneration. There is still a lack of effective strategies for fibrocartilage. Here, we hypothesized that the fibrocartilage could be viewed as a raw material for the renewal of hyaline cartilage and proposed a previously unidentified strategy of cartilage regeneration, namely, "fibrocartilage hyalinization.
View Article and Find Full Text PDFBackground: Osteoarthritis (OA) is the most common degenerative joint disease primarily characterized by cartilage destruction. The aim of this study was to investigate the role, molecular characteristics and potential therapeutic target of chondrocyte ferroptosis in the pathogenesis of OA.
Methods: The expression of ferroptotic hallmarks (iron and lipid peroxidation accumulation, glutathione deletion) were analyzed in paired intact and damaged cartilages from OA patients.
Developmental dysplasia of the hip (DDH) is one of the most common congenital skeletal malformations; however, its etiology remains unclear. Here, we conducted whole-exome sequencing in eight DDH families followed by targeted sequencing of 68 sporadic DDH patients. We identified likely pathogenic variants in the (low-density lipoprotein receptor-related protein 1) gene in two families and seven unrelated patients.
View Article and Find Full Text PDFOsteoarthritis (OA), in which M1 macrophage polarization in the synovium exacerbates disease progression, is a major cause of cartilage degeneration and functional disabilities. Therapeutic strategies of OA designed to interfere with the polarization of macrophages have rarely been reported. Here, we report that SHP099, as an allosteric inhibitor of src-homology 2-containing protein tyrosine phosphatase 2 (SHP2), attenuated osteoarthritis progression by inhibiting M1 macrophage polarization.
View Article and Find Full Text PDFMesenchymal stem cell (MSC) aggregates incorporated with microparticles of functional materials have shown promising prospects in the field of cell therapy for cartilage repair. Given the importance of cadherins in modulating the stemness and chondrogenesis of MSCs, the use of transforming growth factor β1 (TGFβ1)-loaded poly (lactic-co-glycolic acid) (PLGA)-based composite microparticles inspired by duo cadherin (human E- and N-cadherin fusion proteins) to construct a bioartificial stem cell niche in engineered human MSC (hMSC) aggregates to promote chondrogenesis and cartilage regeneration is proposed. The hE/N-cadherin-functionalized PLGA/chitosan-heparin-TGFβ1 (Duo hE/N-cad@P/C-h-TGFβ1) microparticles spatiotemporally upregulates the endogenous E/N-cadherin expression of hMSC aggregates which further amplifies the chondrogenic differentiation and modulate paracrine and anti-inflammatory functions of hMSCs toward constructing a favorable microenvironment for chondrogenesis.
View Article and Find Full Text PDFBackground: Cartilage repair has been a challenge in the field of orthopaedics for decades, highlighting the significance of investigating potential therapeutic drugs. In this study, we explored the effect of the SHP2 inhibitor SHP099, a small-molecule drug, on cartilage repair.
Methods: Human synovial mesenchymal stem cells (SMSCs) were isolated, and their three-way differentiation potential was examined.
Uricase-based therapies are limited for gout partially due to the accumulation of HO in an arthrosis environment with slow metabolism. To tackle this limitation, previous studies adopted a cascade reaction between the degradation of uric acid (UA) and timely elimination of HO using complicated composites of uricase and catalase (CAT)/CAT-like nanozyme. Herein, the self-cascade nanozyme Pt/CeO with high efficiency toward simultaneous UA degradation and HO elimination is demonstrated on the basis of both uricase- and CAT-like activities in Pt, Ir, Rh, and Pd platinum-group metals.
View Article and Find Full Text PDFMost of the current non-pharmacological treatment strategies for atherosclerosis (AS) suffer from poor penetration into the plaque and only aim at a certain factor in its formation process, resulting in limited therapeutic effect. Herein, a kind of nanomotor with dual-mode propulsion is constructed, which is sensitive to higher reactive oxygen species (ROS) at the AS site and near-infrared (NIR) laser by the covalent binding and self-assembly of β-cyclodextrin (β-CD) and L-arginine (LA) with immobilization of Au nanoparticles. NIR laser irradiation can be used as a driving force and to ablate inflammatory macrophages through the photothermal effect.
View Article and Find Full Text PDFBackground: The aim of the present study was to investigate the influence of sagittal femoral bowing on sagittal femoral component alignment, and whether there was correlation between sagittal femoral component alignment and coronal femoral component alignment.
Methods: We retrospectively reviewed 77 knees in 71 patients who had undergone primary TKA for advanced osteoarthritis. All surgeries were performed by using a standard medial parapatellar approach.
Mesenchymal stem cells (MSCs) are well known for their multi-directional differentiation potential and are widely applied in cartilage and bone disease. Synovial mesenchymal stem cells (SMSCs) exhibit a high proliferation rate, low immunogenicity, and greater chondrogenic differentiation potential. Microtubule (MT) plays a key role in various cellular processes.
View Article and Find Full Text PDFKnee osteoarthritis (KOA) is the most common form of joint degeneration with increasing prevalence and incidence in recent decades. KOA is a molecular disorder characterized by the interplay of numerous molecules, a considerable number of which can be detected in body fluids, including synovial fluid, urine, and blood. However, the current diagnosis and treatment of KOA mainly rely on clinical and imaging manifestations, neglecting its molecular pathophysiology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
One of the difficulties in atherosclerosis treatment is that the ablation of inflammatory macrophages, repair of vascular endothelial injury, and anti-tissue proliferation should be considered. However, there are few studies that can solve the abovementioned problems simultaneously. Herein, we present a kind of near-infrared (NIR) light-driven multifunctional mesoporous/macroporous tubular micromotor which can rapidly target the damaged blood vessels and release different drugs.
View Article and Find Full Text PDFBackground: Synovial inflammation plays a major role in the pathogenesis of osteoarthritis (OA). This study investigated the effect of andrographolide (Andro) on synovial inflammation mediated by tumor necrosis factor-alpha receptor 2 (TNFR2) trafficking and its utility in attenuating OA progression.
Methods: Knee joints were harvested from rats subjected to radial transection of the medial collateral ligament (MCLT) and medial meniscus (MMT) to examine the effect of Andro on synovial inflammation and OA progression.
Osteoarthritis (OA) is the major course of joint deterioration, in which M1 macrophage-driven synovitis exacerbates the pathological process. However, precise therapies for M1 macrophage to decrease synovitis and attenuate OA progression have been scarcely proposed. Transient receptor potential vanilloid 1 (TRPV1) is a cation channel that has been implicated in pain perception and inflammation.
View Article and Find Full Text PDF