In recent years, the study of microplastics (MPs) and nanoplastics (NPs) and their effects on human health has gained significant attention. The impacts of NPs on lipid metabolism and the specific mechanisms involved remain poorly understood. To address this, we utilized high-throughput sequencing and molecular biology techniques to investigate how endoplasmic reticulum (ER) stress might affect hepatic lipid metabolism in the presence of polystyrene nanoplastics (PS-NPs).
View Article and Find Full Text PDFButylparaben, a common preservative, is widely used in food, pharmaceuticals and personal care products. Epidemiological studies have revealed the close relationship between butylparaben and diabetes; however the mechanisms of action remain unclear. In this study, we administered butylparaben orally to mice and observed that exposure to butylparaben induced glucose intolerance and hyperlipidemia.
View Article and Find Full Text PDFFoodborne carbon dots (CDs) are generally produced during cooking and exist in food items. Generally, CDs are regarded as nontoxic materials, but several studies have gradually confirmed the cytotoxicity of CDs, such as oxidative stress, reduced cellular activity, apoptosis, etc. However, studies focusing on the health effects of long-term intake of food-borne CDs are scarce, especially in populations susceptible to metabolic disease.
View Article and Find Full Text PDFMethylparaben (MP), a preservative widely used in daily supplies, exists in both the environment and the human body. However, the potential health risks posed by MP remain unclear. This study aimed to unravel the mechanisms by which MP disrupts glucose and lipid homeostasis.
View Article and Find Full Text PDFNanoplastics-induced developmental and reproductive toxicity, neurotoxicity and immunotoxicity are a focus of widespread attention. However, the effects of nanoplastics (NPs) on glycolipid metabolism and the precise underlying mechanisms are unclear at present. Here, we showed that oral administration of polystyrene nanoparticles (PS-NPs) disrupts glycolipid metabolism, with reactive oxygen species (ROS) identified as a potential key signaling molecule.
View Article and Find Full Text PDFFoodborne carbon dots (CDs), an emerging food nanocontaminant, are an increasing risk factor for metabolic toxicity in mammals. Here, we report that chronic CD exposure induced glucose metabolism disorders via disruption of the gut-liver axis in mice. 16s rRNA analysis demonstrated that CD exposure decreased the abundance of beneficial bacteria (Bacteroides, Coprococcus, and S24-7) and increased the abundance of harmful bacteria (Proteobacteria, Oscillospira, Desulfovibrionaceae, and Ruminococcaceae), as well as increased the Firmicutes/Bacteroidetes ratio.
View Article and Find Full Text PDFLambda-cyhalothrin (LCT) is a critical synthetic Type II pyrethroid insecticide widely applied. Several studies suggest pyrethroids could induce fat accumulation, promote adipogenesis, and impair liver function. Now, the influences of LCT on the hepatic lipid metabolism and the cellular mechanism is still unknown.
View Article and Find Full Text PDFIrisin, a muscle-secreted cytokine involved in maintaining glucose homeostasis and improving insulin resistance, is generated from the precursor fibronectin type Ⅲ domain-containing protein 5 (FNDC5) by specific proteases. Zinc-finger protein Zfp57, a transcription factor that maintains the methylation during early embryonic development, is also reported to be associated with diabetes mellitus. However, the association between Zfp57 and FNDC5 is still unclear.
View Article and Find Full Text PDFBackground: Food-borne carbon dots (CDs) are widely generated during food processing and are inevitably ingested by humans causing toxicity. However, the toxic effects of food-borne CDs on the blood glucose metabolism are unknown.
Results: In this study, we brewed beer via a representative strategy and extracted the melting-barley CDs (MBCDs) to explore the toxic effects on blood glucose in mice.
Di-(2-ethylhexyl) phthalate (DEHP), an endocrine-disrupting chemical (EDC) commonly used as a plasticizer, is responsible for widespread environmental pollution. Epidemiological and experimental data implicate DEHP and its metabolite mono(2-ethylhexyl) phthalate (MEHP) in the occurrence and development of metabolic syndrome. However, the specific effects and potential mechanisms of action of DEHP on glucose and lipid metabolism in adults are currently unclear.
View Article and Find Full Text PDFMicroplastic (MP) and nanoplastic (NP) induce neurotoxicity, cytotoxicity, and reproductive system toxicity in mammals. However, the impacts of NPs on the endocrine system are obscure. Here, monodisperse polystyrene nanoplastics (PS-NPs) were prepared by emulsion polymerization and the accumulation of fluorescent PS-NPs in various organs, including the liver, kidney, spleen, and pancreas, was examined.
View Article and Find Full Text PDFWith the rapid development of modern biotechnology, the cultivation of high-quality biotechnology talents has received more and more attention. The course of Biologicology is a core subject that students majoring in biology should master. However, Biologicology is a new subject, and its teaching content and teaching methods are at the exploratory stage.
View Article and Find Full Text PDFThiamethoxam (TMX) is one of the major compounds of neonicotinoids, the most widely used class of insecticides worldwide. Previously, TMX was considered a non-toxic neonicotinoid insecticide to mammals. However, the genotoxicity, cytotoxicity, and hepatotoxicity of TMX in mammals were recently reported.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NPs) are authorized food additives, and children have the highest exposure. Therefore, children are likely more susceptible to the adverse effects of TiO NPs than adults. Previous study showed that oral administration of 50 mg/kg body weight (bw) TiO NPs increase plasma glucose in mice.
View Article and Find Full Text PDFBackground: Silicon dioxide nanoparticles (SiO NPs) are one of the most widely utilized NPs in various food sectors. However, the potential endocrine toxicity of SiO NPs has not been characterized.
Results: In the present study, mice were orally administered a series of doses of SiO NPs.
Elevated plasma free fatty acid (FFA) levels are associated with insulin resistance and can cause lipotoxicity in skeletal muscles. In response to FFAs, skeletal muscle can secrete a variety of cytokines. Irisin, one such muscle-secreted cytokine, can improve glucose tolerance, glucose uptake, and lipid metabolism.
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO NPs) represent an important class of commercially applied materials. Recently, adverse effects of ZnO NPs were found in humans and animals following ingestion, although the effects on endocrine system disease remain unclear. In this study, ZnO NPs were orally administered to mice, and at doses of 25 mg/kg bw (body weight) ZnO NPs and above, plasma glucose increased significantly.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiO NPs) are reported to increase plasma glucose levels in mice at specific doses. The production and accumulation of reactive oxygen species (ROS) is potentially the most important factor underlying the biological toxicity of TiO NPs but the underlying mechanisms are unclear at present. Data from genome-wide analyses showed that TiO NPs induce endoplasmic reticulum (ER) stress and ROS generation, leading to the inference that TiO NP-induced ER stress contributes to enhancement of ROS in mice.
View Article and Find Full Text PDFGlucosamine (GlcN) is a dietary supplement that is widely used to promote joint health. Reports have demonstrated that oral GlcN adversely affects glucose metabolism. Here, we found that oral administration of GlcN induced insulin resistance (IR) and increased plasma glucose levels in mice.
View Article and Find Full Text PDF