Publications by authors named "Xingmiao Fang"

Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing.

View Article and Find Full Text PDF

Pneumatic soft robot attracts extensive attention because of its own characteristics. It has great application potential in medical and other fields. Although the recent improvement of the soft robot shows great potentials for delicate manipulations, the development of completely untethered pneumatic intelligent soft robots remains challenging.

View Article and Find Full Text PDF

Hydrogel robots are widely used in biomedical fields due to their excellent biocompatibility and response to external stimuli. However, traditional processing methods cannot rapidly fabricate complex structures, and smart response strategies often rely on double-layer structures fabricated from two materials with significantly different swelling properties. In this study, we present a single-layer hydrogel robot that can be fabricated in one step using a high-precision digital light processing (H-P DLP) 3D printing system.

View Article and Find Full Text PDF

Microrobots have been extensively studied for biomedical applications, and significant innovations and advances have been made in diverse aspects of the field. However, most studies have been based on individual microrobots with limited capabilities, constraining their scalability of functions for practical use. Here, we demonstrate the interactive and synergistic behaviours of multiple microrobots that are heterogeneous or incompletely homogeneous.

View Article and Find Full Text PDF