Spider silk proteins (spidroins) are particularly attractive due to their excellent biocompatibility. Spider can produce up to seven different types of spidroins, each with unique properties and functions. Spider minor ampullate silk protein (MiSp) might be particularly interesting for biomedical applications, as the constituent silk is mechanically strong and does not super-contract in water, attributed to its amino acid composition.
View Article and Find Full Text PDFAmyloid fibrils-nanoscale fibrillar aggregates with high levels of order-are pathogenic in some today incurable human diseases; however, there are also many physiologically functioning amyloids in nature. The process of amyloid formation is typically nucleation-elongation-dependent, as exemplified by the pathogenic amyloid-β peptide (Aβ) that is associated with Alzheimer's disease. Spider silk, one of the toughest biomaterials, shares characteristics with amyloid.
View Article and Find Full Text PDFSpider flagelliform silk shows the best extensibility among various types of silk, but its biomimetic preparation has not been much studied. Herein, five customized flagelliform spidroins (FlSps: S and NTD-Sn-CTD, = 1-4), in which the repetitive region (S) and N-/C- terminal domains (NTD and CTD) are from the same spidroin and spider species, were produced recombinantly. The recombinant spidroins with terminal domains were able to form silk-like fibers with diameters of ∼5 μm by manual pulling at pH 8.
View Article and Find Full Text PDFBackground: Spider silk is a proteinaceous fiber with remarkable mechanical properties spun from spider silk proteins (spidroins). Engineering spidroins have been successfully produced in a variety of heterologous hosts and the most widely used expression system is Escherichia coli (E. coli).
View Article and Find Full Text PDFBackground: Oral vaccine is highly desired for infectious disease which is caused by pathogens infection through the mucosal surface. The design of suitable vaccine delivery system is ongoing for the antigen protection from the harsh gastric environment and target to the Peyer's patches to induce sufficient mucosal immune responses. Among various potential delivery systems, bacterial inclusion bodies have been widely used as delivery systems in the field of nanobiomedicine.
View Article and Find Full Text PDFCVB3 is a common human pathogen to be highly lethal to newborns and causes viral myocarditis and pancreatitis in adults. However, there is no vaccine available for clinical use. CVB3 capsid protein VP1 is an immunodominant structural protein, containing several B- and T-cell epitopes.
View Article and Find Full Text PDFBackground: Mild solubilization of inclusion bodies has attracted attention in recent days, with an objective to preserve the existing native-like secondary structure of proteins, reduce protein aggregation during refolding and recovering high amount of bioactive proteins from inclusion bodies.
Results: Here we presented an efficient method for mild solubilization of inclusion bodies by using a freeze-thawing process in the presence of low concentration of urea. We used two different proteins to demonstrate the advantage of this method over the traditional urea-denatured method: enhanced green fluorescent protein (EGFP) and the catalytic domain of human macrophage metalloelastase (MMP-12_CAT).
Previously, the C-terminal fragment of a split intein was known to undergo controllable C-cleavage at its C-terminus only when the N-terminal fragment of the intein was added. Here we constructed a similar split intein from the Ssp DnaX intein, but we unexpectedly observed that its C-terminal 136-aa fragment could undergo spontaneous C-cleavage without the N-terminal fragment that was up to 15 aa long and contained the conserved intein motif A. This C-cleavage activity was significantly decreased by a mutation of the conserved Thr residue in the conserved intein motif B.
View Article and Find Full Text PDFProtein Pept Lett
December 2011
Protein-splicing inteins are widespread in nature and have found many applications in protein research and engineering. The mechanism of protein splicing typically requires a nucleophilic amino acid residue at both position 1 (first residue of intein) and position +1 (first residue after intein), however it was not clear whether or how the three different nucleophilic residues (Cys, Ser, and Thr) would work differently at these two positions. To use intein in a target protein of interest, one needs to choose an intein insertion site to have a nucleophilic residue at position +1, therefore it is desirable to know what nucleophilic residue(s) are preferred by different inteins.
View Article and Find Full Text PDF