Publications by authors named "Xingmei Duan"

mRNA-based nonviral gene therapy has played an important role in cancer therapy, however, the limited delivery efficiency and therapeutic capacity still require further exploration and enhancement. Immunogene therapy provides a strategy for cancer treatment. Bacteria are tiny single-celled living organisms, many of which can be found in and on the human body and are beneficial to humans.

View Article and Find Full Text PDF

Immunogene therapy has emerged as strategy against cancer by introducing immune-stimulating components into gene therapy. However, there is still a need for an ideal platform to achieve both immune stimulation and efficient gene delivery. Lactobacillus reuteri has potential immunomodulatory activity owing to its unique antigenicity, which is potentially relevant to cancer progression.

View Article and Find Full Text PDF

Background: Messenger RNA (mRNA)-based immunogene therapy holds significant promise as an emerging tumor therapy approach. However, the delivery efficiency of existing mRNA methods and their effectiveness in stimulating anti-tumor immune responses require further enhancement. Tumor cell lysates containing tumor-specific antigens and biomarkers can trigger a stronger immune response to tumors.

View Article and Find Full Text PDF

Interleukin 12 (IL-12) is a heterodimer consisting of 2 subunits, p35 and p40, with unique associations and interacting functions with its family members. IL-12 is one of the most important cytokines regulating the immune system response and is integral to adaptive immunity. IL-12 has shown marked therapeutic potential in a variety of tumor types.

View Article and Find Full Text PDF

RNA interference-based gene therapy has led to a strategy for spinal cord injury (SCI) therapy. However, there have been high requirements regarding the optimal gene delivery vector for siRNA-based SCI gene therapy. Here, we developed an injectable and photocurable lipid nanoparticle GelMA (PLNG) hydrogel scaffold for controlled dual siRNA delivery at the SCI wound site.

View Article and Find Full Text PDF

Background: Messenger ribonucleic acid (mRNA)-based gene therapy has great potential in cancer treatment. However, the application of mRNA-based cancer treatment could be further developed. Elevated delivery ability and enhanced immune response are advantages for expanding the application of mRNA-based cancer therapy.

View Article and Find Full Text PDF

Messenger ribonucleic acid (mRNA)-based gene therapy has great potential for cancer gene therapy. However, the effectiveness of mRNA in cancer therapy needs to be further improved, and the delivery efficiency and instability of mRNA limit the application of mRNA-based products. Both the delivery efficiency can be elevated by cell-penetrating peptide modification, and the immune response can be enhanced by tumor cell lysate stimulation, representing an advantageous strategy to expand the effectiveness of mRNA gene therapy.

View Article and Find Full Text PDF

Introduction: Cell-membrane nanocarriers are usually constructed by modifying the nanoparticle surface with cell membrane extracts, which has a direct benefit in endowing targeting capacity to nanocarriers based on their original cell types. However, delivering nucleic acid cargos by cell membrane-based nanoparticles is difficult owing to the strong negative charge of the cell membrane fraction. In this study, we developed a cancer cell membrane-based drug delivery system, the cMDS, for efficient siRNA delivery.

View Article and Find Full Text PDF

Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia.

View Article and Find Full Text PDF

Cancer is a complex disease associated with a combination of abnormal physiological process and exhibiting dysfunctions in multiple systems. To provide effective treatment and diagnosis for cancer, current treatment strategies simultaneously focus on various tumor targets. Based on the rapid development of nanotechnology, nanocarriers have been shown to exhibit excellent potential for cancer therapy.

View Article and Find Full Text PDF

The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed.

View Article and Find Full Text PDF

Purpose: Oral squamous cell carcinoma (OSCC) is the most common type of oral cancer, with more than 300,000 new cases annually. Despite advances in existing treatments, including surgery, radiation, chemotherapy, and immunotherapy, the overall survival and prognosis have remained poor. However, gene therapy based on non-viral vectors provides new ideas for the treatment of OSCC.

View Article and Find Full Text PDF

Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients' lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients' lives.

View Article and Find Full Text PDF

Drug-controlled release is recognized as effective for improving compliance with treatment and obtaining better therapeutic efficacy with less toxicity in cancer treatment. However, few reports in this area are involved in nucleic acids delivery, especially in RNA therapeutics delivery. In this study, an injectable hydrogel Methacrylated gelatin (GM) scaffold was introduced into a dual-RNA hybrid delivery complex hybrid lipid particle (HLP) to form a G-HLP/RNAs system.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is one of the most common autoimmune diseases worldwide, causing severe cartilage damage and disability. Despite the recent progress made in RA treatment, limitations remain in achieving early and efficient therapeutic intervention. Advanced therapeutic strategies are in high demand, and siRNA-based therapeutic technology with a gene-silencing ability represents a new approach for RA treatment.

View Article and Find Full Text PDF

Small interfering RNA (siRNA)-based drugs have shown tremendous potential to date in cancer gene therapy. Despite the considerable efforts in siRNA design and manufacturing, unsatisfactory delivery systems persist as a limitation for the application of siRNA-based drugs. In this work, the cholesterol, cell-penetrating peptide conjugate cRGD (R8-cRGD), and polyethylene glycol (PEG) were introduced into low-molecular-weight polyethyleneimine (LMW PEI) to form cRGD-R9-cholesterol-PEI-PEG (RRCPP) nanoparticles with specific targeting and highly penetrating abilities.

View Article and Find Full Text PDF

Drug-induced hepatitis (DIH), which seriously interferes with disease treatment, is one of the most common reasons for termination of new drugs during preclinical studies or post-marketing surveillance. Although antioxidants and anti-inflammatory agents are promising, their nonspecific distribution and insolubility limit their application. Therefore, precise drug release at the disease site is an important way to alleviate DIH and avoid side effects.

View Article and Find Full Text PDF

Correction for 'A ROS-scavenging multifunctional nanoparticle for combinational therapy of diabetic nephropathy' by Yuna Tong et al., Nanoscale, 2020, DOI: .

View Article and Find Full Text PDF

Background: Drugs that work based on the mechanism of RNA interference have shown strong potential in cancer gene therapy. Although significant progress has been made in small interfering RNA (siRNA) design and manufacturing, ideal delivery system remains a limitation for the development of siRNA-based drugs. Particularly, it is necessary to focus on parameters including delivery efficiency, stability, and safety when developing siRNA formulations for cancer therapy.

View Article and Find Full Text PDF

Based on its rapid expression, simple sequence composition, low immunogenicity, and flexible modification possibilities, synthesized mRNA has demonstrated strong potential as a candidate for gene therapy. Many efforts have been made to enhance its therapeutic efficacy and safety. Profiting from the development in pathogenesis and materials science, much progress has been achieved in mRNA-based therapy studies.

View Article and Find Full Text PDF

Although synergistic therapy for diabetes mellitus has displayed significant promise for the effective treatment of diabetic nephropathy (DN), developing a simple and effective strategy to construct multifunctional nanoparticles is still a huge challenge. Moreover, the complicated pathological mechanism of DN involves various pathway dysfunctions that limit the effectiveness of a single therapeutic approach. Herein, hollow mesoporous silica nanocomposite (HMSN) particles doped with trace cerium oxide that exhibit renoprotective activity have been designed, which not only have the ability to prevent ROS-associated DN pathogenesis but also have high drug loading capacity.

View Article and Find Full Text PDF

Immunogene therapy is a novel method for the treatment of colorectal cancer. Cytokine IL-15 has exhibited therapeutic anticancer potential due to its immune-stimulation property. However, conventional IL-15-based cancer gene therapy studies have been performed using the plasmid DNA form, which has potential shortcomings including weak delivery efficiency and backbone effect.

View Article and Find Full Text PDF