Publications by authors named "Xinglin Tong"

High-sensitivity detection of vibrations under high temperatures is a topic of great interest in modern engineering such as thermal engine deep-sea aquaculture factory ship, aerospace, high temperature casting, energy, etc. As traditional accelerometers and some fiber optic F-P accelerometers have shown their sensing limits at about 400 °C and 650 °C, respectively, a high temperature fiber optic F-P accelerometer based on MEMS technology is proposed. To obtain a high-performance chip for the sensor, an examination of the theoretical performance of an L and Г-shaped cantilever beam diaphragm shows a sensitivity of 15.

View Article and Find Full Text PDF

A novel Mach-Zehnder interferometer using eccentric-core fiber (ECF) design for optical coherence tomography (OCT) is proposed and demonstrated. Instead of the commercial single-mode fiber (SMF), the ECF is used as one interference arm of the implementation. Because of the offset location of the eccentric core, it is sensitive to directional bending and the optical path difference (OPD) of two interference arms can be adjusted with high precision.

View Article and Find Full Text PDF

The demodulation algorithm is very important to improving the measurement accuracy of a sensing system. In this paper, the variable step size hill climbing search method will be initially used for the optical fiber Fabry-Perot (F-P) sensing demodulation algorithm. Compared with the traditional discrete gap transformation demodulation algorithm, the computation is greatly reduced by changing step size of each climb, which could achieve nano-scale resolution, high measurement accuracy, high demodulation rates, and large dynamic demodulation range.

View Article and Find Full Text PDF

This paper presents a method that uses fiber Bragg grating (FBG) sensors to distinguish the temporal gait patterns in gait cycles. Unlike most conventional methods that focus on electronic sensors to collect those physical quantities (i.e.

View Article and Find Full Text PDF

Optical fiber Fabry-Perot (F-P) sensors have been used in various on-line monitoring of physical parameters such as acoustics, temperature and pressure. In this paper, a wavelet phase extracting demodulation algorithm for optical fiber F-P sensing is first proposed. In application of this demodulation algorithm, search range of scale factor is determined by estimated cavity length which is obtained by fast Fourier transform (FFT) algorithm.

View Article and Find Full Text PDF