The effect of the ratio of red and blue light on fruit biomass radiation-use efficiency (FBRUE) in dwarf tomatoes has not been well studied. Additionally, whether white light offers a greater advantage in improving radiation-use efficiency (RUE) and FBRUE over red and blue light under LED light remains unknown. In this study, two dwarf tomato cultivars ('Micro-Tom' and 'Rejina') were cultivated in three red-blue light treatments (monochromatic red light, red/blue light ratio = 9, and red/blue light ratio = 3) and a white light treatment at the same photosynthetic photon flux density of 300 μmol m s.
View Article and Find Full Text PDFThis study aimed to analyze the effects of photosynthetic photon flux density (PPFD) on fruit biomass radiation-use efficiency (FBRUE) of the dwarf tomato cultivar 'Micro-Tom' and to determine the suitable PPFD for enhancing the FBRUE under LED light at the reproductive growth stage. We performed four PPFD treatments under white LED light: 200, 300, 500, and 700 μmol m s. The results demonstrated that a higher PPFD led to higher fresh and dry weights of the plants and lowered specific leaf areas.
View Article and Find Full Text PDFDwarf tomatoes are advantageous when cultivated in a plant factory with artificial light because they can grow well in a small volume. However, few studies have been reported on cultivation in a controlled environment for improving productivity. We performed two experiments to investigate the effects of photosynthetic photon flux density (PPFD; 300, 500, and 700 μmol m s) with white light and light quality (white, R3B1 (red:blue = 3:1), and R9B1) with a PPFD of 300 μmol m s on plant growth and radiation-use efficiency (RUE) of a dwarf tomato cultivar ('Micro-Tom') at the vegetative growth stage.
View Article and Find Full Text PDF