Publications by authors named "Xinglin Guo"

Background: This Bayesian network meta-regression analysis provides a head-to-head comparison of first-line therapeutic immune checkpoint inhibitors (ICI) and tyrosine kinase inhibitors (TKI) combinations for metastatic renal cell carcinoma (mRCC) using median follow-up time as covariate.

Methods: We searched Six databases for a comprehensive analysis of randomised clinical trials (RCTs). Comparing progression free survival (PFS) and overall survival (OS) of different interventions at the same time node by Bayesian network meta-analysis.

View Article and Find Full Text PDF

Strong adhesion of hydrogels on solids plays an important role in stable working for various practical applications. However, current hydrogel adhesion suffers from poor interfacial bonding with solid surfaces. Here, we propose a general superwetting-assisted interfacial polymerization (SAIP) strategy to robustly anchor hydrogels onto solids by forming high-density interfacial covalent bonds.

View Article and Find Full Text PDF

Marine biofouling which interferes with normal marine operation and also causes huge economic loss has become a worldwide problem. With the development of society, there is an urgent need to develop non-toxic and efficient anti-fouling strategies. Capsaicin is an environmentally friendly antifouling agent, but controlling the stable release of capsaicin from the coating is still a challenge to be solved.

View Article and Find Full Text PDF

Industrial waste salt is classified as hazardous waste to the environment. The organic impurity and its occurrence in industrial waste salt affect the salt resource utilization. In this paper, composition quantitative analysis, XRD, TG-DSC, SEM/FIB-SEM coupled with EDS, FTIR, XPS and GC-Ms were chosen to investigate the organic impurity and its occurrence in industrial waste salt.

View Article and Find Full Text PDF

Marine biofouling is a ubiquitous and longstanding challenge that causes both economic and environmental problems. To address this, several antifouling strategies have been proposed, such as the release of biocidal compounds or surface chemical/physical design. Here we report a coating with surface structures (chemical heterogeneity) triggered by phase segregation, which endues the good antifouling properties, alongside robust mechanical properties, low underwater oil adhesion, and excellent optical transparency.

View Article and Find Full Text PDF

Hydrogel hybrids are one of the key factors in life activities and biomimetic science; however, their development and utilization are critically impeded by their inadequate adhesive strength and intricate process. In nature, barnacles can stick to a variety of solid surfaces firmly (adhesive strength above 300 kPa) using a hydrophobic interface, which inspires us to firmly combine hydrogels and polymers through introducing an adhesive layer. By spreading a hydrophobic liquid membrane directly, tough combination of a hydrogel and a polymer substrate could be achieved after one-step polymerization.

View Article and Find Full Text PDF

Hydrogels, as a representative of soft and biocompatible materials, have been widely used in biosensors, biomedical devices, soft robotics, and the marine industry. However, the ir-recoverability of hydrogels after dehydration, which causes the loss of original mechanical, optical, and wetting properties, has severely restricted their practical applications. At present, this critical challenge of maintaining hydrogels' accurate character has attracted less attention.

View Article and Find Full Text PDF

Anti-biofouling surfaces are of high importance owing to their crucial roles in biosensors and biomedical devices, especially in the marine industry. However, traditional anti-biofouling surfaces based on either the release of biocidal compounds or surface peeling will contaminate the environment. The outstanding performances of natural anti-biofouling surfaces motivate the development of new bioinspired antifouling surfaces.

View Article and Find Full Text PDF

The aim of the present paper is to provide a quantitative prediction of the stretch-induced crystallization in natural rubber, the exclusive reason for its history-dependent thermomechanical features. A constitutive model based on a micromechanism inspired molecular chain approach is formulated within the context of the thermodynamic framework. The molecular configuration of the partially crystallized single chain is analyzed and calculated by means of some statistical mechanical methods.

View Article and Find Full Text PDF

Self-healing hydrogels have a great potential application in 3D printing, soft robotics, and tissue engineering. There have been a large number of successful strategies for developing hydrogels that exhibit rapid and autonomous recovery. However, developing a gel with an excellent self-healing performance within several seconds is still an enormous challenge.

View Article and Find Full Text PDF

Seamlessly bridging the hard and the soft, a strategy to fabricate hierarchically porous NiTi/hydrogels nanocomposites is reported. The nanocomposite surface can hold high-content water while keeping its hierarchical nanoscale topography, thus showing exceptional antibiofouling performance. This strategy will lead to antibiofouling alloy (e.

View Article and Find Full Text PDF

A robust double-network (DN) hydrogel fabricated by a one-pot, one-step reaction is reported. The DN hydrogels not only have high mechanical strength and extremely low underwater oil adhesion, but also exhibit excellent characteristics, such as short processing duration, moderate swelling and free shaping. The DN hydrogel is durable in artificial sea water, and its mechanical property can be easily adjusted by adjusting the crosslinking agent concentration.

View Article and Find Full Text PDF

Anti-biofouling surfaces are of high importance owing to their crucial roles in biosensors, biomedical devices, food processing, the marine industry, etc. However, traditional anti-biofouling surfaces based on either the release of biocidal compounds or surface chemical/physical design cannot satisfy the practical demands when meeting real-world complex conditions. The outstanding performances of natural anti-biofouling surfaces motivate the development of new bioinspired anti-biofouling surfaces.

View Article and Find Full Text PDF

Control of the stretching or compressing ratio of spherical nanoparticles (NPs) leads to a dramatic change in the shape and size of particles based on amphiphilic biodegradable poly(lactide-co-glycolide-b-ethylene glycol-b-lactide-co-glycolide) (PLGE) triblock copolymers. Drug release, endocytosis and intracellular accumulation tests on these anisotropic PLGE NPs show significantly enhanced properties in comparison with spherical NPs, indicating they are good candidates for drug delivery.

View Article and Find Full Text PDF

This work presents an effective method to identify the tip locations of an internal crack in cantilever plates based on a Kriging surrogate model. Samples of varying crack parameters (tip locations) and their corresponding root mean square (RMS) of random responses are used to construct the initial Kriging surrogate model. Moreover, the pseudo excitation method (PEM) is employed to speed up the spectral analysis.

View Article and Find Full Text PDF

This study evaluated different initiator systems in self-etching model adhesives, in which camphorquinone (CQ) or [3-(3,4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-2-hydroxylpropy] trimethylammonium chloride (QTX) was employed as a photoinitiator (dye). N-phenylglycine (NPG), ethyl 4-dimethylaminobenzoate (4E) or 2-(dimethylamino) ethyl methacrylate (DMAEMA) was used as the coinitiator (CI). The role of diphenyliodonium hexafluorophosphate (DPIHP) in the polymerization process was also studied.

View Article and Find Full Text PDF

Aims: The purpose of this study was to evaluate the effects of photoinitiator type and water content on the polymerization rate (Rp) and degree of conversion (DC) of a model BisGMA/HEMA-based resin.

Materials And Methods: The comonomer mixture consisted of BisGMA/HEMA (60/40 by weight). Different two- or three-component photoinitiator systems were incorporated.

View Article and Find Full Text PDF

Herein, we report a special poly(vinyl alcohol)/dimethylsulfoxide (PVA/DMSO) gel electromechanical system with great self-governed capability. The system is operated in air by applying a noncontacted DC electric field. When the applied electric field exceeds a certain critical value, the gel exhibits fast and self-governing locomotion on the gradiently charged glass substrate.

View Article and Find Full Text PDF

Aims: The purpose of this study was to evaluate the effects of a polymerizable solubility enhancer, poly (ethylene glycol) dimethacrylate (PEGDMA) in BisGMA/HEMA model adhesives on adhesive phase separation, adhesive penetration and structural integrity of adhesive/dentin (a/d) interfaces.

Materials And Methods: The occlusal one-third of the crown was removed from 10 unerupted human third molars, each tooth was separated in half by cutting perpendicular to the acid conditioned dentin surface and treated with BisGMA/HEMA model adhesives with and without PEGDMA. Five-micron-thick sections of adhesive/dentin interface specimens were cut and stained with Goldner's trichrome for light microscopy.

View Article and Find Full Text PDF

A novel approach based on electrohydrodynamic behavior of a dielectric liquid pattern in electric field was developed to fabricate a poly(vinyl alcohol)/dimethyl sulfoxide (PVA/DMSO) gel electromechanical system. Driving experiments indicate that this system could be well-operated in air by using a direct current (DC) electric field, and the gel exhibits a long-range path-controlled snaillike or snakelike motion with a fast crawling speed of 14.4 mm/s.

View Article and Find Full Text PDF

Poly(2,4-hexadiyne-1,6-diol)(poly(HDiD)) was coated on the outer walls of carbon nanotubes (CNTs) with the aid of supercritical CO(2), resulting in poly(HDiD)/CNT nanocomposites, which possess optical properties originated from poly(HDiD).

View Article and Find Full Text PDF

This work describes a simple but novel analytical method for in situ monitoring of the diffusion process of drugs in hydrogels based on refractive index measurements. The diffusion process was monitored by recording the refraction of a laser beam passing through a triangular cell, which allows the determination of changes in the refractive index distribution from the deviated distance of the linear beam. Compared to conventional methods, this new method exhibits advantages such as more simplicity, lower cost, and speed.

View Article and Find Full Text PDF