Publications by authors named "Xingliang Hou"

Article Synopsis
  • The study focuses on how allele dosage affects variations in traits of hexaploid sweet potato, based on deep sequencing of 294 accessions, creating a genome-wide variation map.* -
  • Genome-wide association studies revealed quantitative trait loci that link allele dosage to 23 agronomic traits, highlighting how sweet potato breeding has selectively increased these alleles to improve crop performance.* -
  • The research uncovers the evolutionary trend in the Mesoamerican gene pool towards higher dosage of beneficial alleles, with evidence from transgenic validation and identification of sequence variations influencing traits like tuber weight and flesh color.*
View Article and Find Full Text PDF

The plant master photoperiodic regulator CONSTANS (CO) interacts with Nuclear Factor-Y subunits B2 (NF-YB2) and C9 (NF-YC9) and transcriptionally activates the florigen gene FLOWERING LOCUS T (FT), regulating floral transition. However, the molecular mechanism of the functional four-component complex assembly in the nucleus remains elusive. We report that co-phase separation of CO with NF-YB2/NF-YC9/FT precisely controls heterogeneous CO assembly and FT transcriptional activation.

View Article and Find Full Text PDF

Plants have evolved a remarkable ability to sense and respond to changes in photoperiod, allowing adjustments to their growth and development based on seasonal and environmental cues. The floral transition is a pivotal stage in plant growth and development, signifying a shift from vegetative to reproductive growth. CONSTANS (CO), a central photoperiodic response factor conserved in various plants, mediates day-length signals to control the floral transition, although its mechanisms of action vary among plants with different day-length requirements.

View Article and Find Full Text PDF

Soybean is a photoperiod-sensitive short-day crop whose reproductive period and yield are markedly affected by day-length changes. Seed weight is one of the key traits determining the soybean yield; however, the prominent genes that control the final seed weight of soybean and the mechanisms underlying the photoperiod's effect on this trait remain poorly understood. In this study, we identify SW19 as a major locus controlling soybean seed weight by QTL mapping and determine Dt1, an orthologous gene of Arabidopsis TFL1 that is known to govern the soybean growth habit, as the causal gene of the SW19 locus.

View Article and Find Full Text PDF

Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants. However, the complicated operational protocols and low efficiency of current transformation strategies restrict the genetic modification of most plant species. This paper describes the development of the regenerative activity-dependent in planta injection delivery (RAPID) method based on the active regeneration capacity of plants.

View Article and Find Full Text PDF

Plant volatile compounds have important physiological and ecological functions. Phenylacetaldehyde (PAld), a volatile phenylpropanoid/benzenoid, accumulates in the leaves of tea () plants grown under continuous shading. This study was conducted to determine whether PAld production is correlated with light and to elucidate the physiological functions of PAld in tea plants.

View Article and Find Full Text PDF

Unlabelled: Soybean is an utterly important crop for high-quality meal protein and vegetative oil. Soybean seed protein content has become a key factor in nutrients for livestock feed as well as human dietary consumption. Genetic improvement of soybean seed protein is highly desired to meet the demands of rapidly growing world population.

View Article and Find Full Text PDF

Gibberellin (GA) plays a key role in floral induction by activating the expression of floral integrator genes in plants, but the epigenetic regulatory mechanisms underlying this process remain unclear. Here, we show that BRAHMA (BRM), a core subunit of the chromatin-remodeling SWItch/sucrose nonfermentable (SWI/SNF) complex that functions in various biological processes by regulating gene expression, is involved in GA-signaling-mediated flowering via the formation of the DELLA-BRM-NF-YC module in Arabidopsis (Arabidopsis thaliana). DELLA, BRM, and NF-YC transcription factors interact with one another, and DELLA proteins promote the physical interaction between BRM and NF-YC proteins.

View Article and Find Full Text PDF

Photoperiodic plants perceive changes in day length as seasonal cues to orchestrate their vegetative and reproductive growth. Although it is known that the floral transition of photoperiod-sensitive plants is tightly controlled by day length, how photoperiod affects their post-flowering development remains to be clearly defined, as do the underlying mechanisms. Here we demonstrate that photoperiod plays a prominent role in seed development.

View Article and Find Full Text PDF

Photoperiod responsiveness is important to soybean production potential and adaptation to local environments. Varieties from temperate regions generally mature early and exhibit extremely low yield when grown under inductive short-day (SD) conditions. The long-juvenile (LJ) trait is essentially a reduction and has been introduced into soybean cultivars to improve yield in tropical environments.

View Article and Find Full Text PDF

Sweet potato (Ipomoea batatas L.) is a major root crop worldwide. Sweet potato weevils (SPWs) pose one of the most significant challenges to sweet potato production in tropical and subtropical regions, causing deleterious economic and environmental effects.

View Article and Find Full Text PDF

Environmental stresses cause an increased number of unfolded or misfolded proteins to accumulate in the endoplasmic reticulum (ER), resulting in ER stress. To restore ER homeostasis and survive, plants initiate an orchestrated signaling pathway known as the unfolded protein response (UPR). Asparagine-rich protein (NRP) 1 and NRP2, two homologous proteins harboring a Development and Cell Death domain, are associated with various stress responses in Arabidopsis (Arabidopsis thaliana), but the relevant molecular mechanism remains obscure.

View Article and Find Full Text PDF

Auxin is involved in various developmental processes of plants, including cell division in cambium and xylem differentiation. However, most studies linking auxin and xylem cell production are performed in environments with a strong seasonality (i.e.

View Article and Find Full Text PDF

The classical soybean (Glycine max) trait long juvenile (LJ) is essentially a reduction in sensitivity to short-day (SD) conditions for induction and completion of flowering, and has been introduced into soybean cultivars to improve yield in tropical environments. However, only one locus, J, is known to confer LJ in low-latitude varieties. Here, we defined two quantitative trait loci contributing to the LJ trait, LJ16.

View Article and Find Full Text PDF

In plants, light signals trigger a photomorphogenic program involving transcriptome changes, epigenetic regulation, and inhibited hypocotyl elongation. The evolutionarily conserved histone variant H2A.Z, which functions in transcriptional regulation, is deposited in chromatin by the SWI2/SNF2-RELATED 1 complex (SWR1c).

View Article and Find Full Text PDF

Light functions as the primary environmental stimulus and brassinosteroids (BRs) as important endogenous growth regulators throughout the plant lifecycle. Photomorphogenesis involves a series of vital developmental processes that require the suppression of BR-mediated seedling growth, but the mechanism underlying the light-controlled regulation of the BR pathway remains unclear. Here, we reveal that nuclear factor YC proteins (NF-YCs) function as essential repressors of the BR pathway during light-controlled hypocotyl growth in Arabidopsis thaliana.

View Article and Find Full Text PDF

Seed storage protein (SSP) acts as one of the main components of seed storage reserves, of which accumulation is tightly mediated by a sophisticated regulatory network. However, whether and how gibberellin (GA) signaling is involved in this important biological event is not fully understood. Here, we show that SSP content in Arabidopsis (Arabidopsis thaliana) is significantly reduced by GA and increased in the GA biosynthesis triple mutant ga3ox1/3/4.

View Article and Find Full Text PDF

Plants have evolved precise mechanisms to optimize immune responses against pathogens. ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) plays a vital role in plant innate immunity by regulating basal resistance and effector-triggered immunity. Nucleocytoplasmic trafficking of EDS1 is required for resistance reinforcement, but the molecular mechanism remains elusive.

View Article and Find Full Text PDF

The phytohormone gibberellin (GA) is critical for anther development. RGA, a member of the DELLA family of proteins that are central GA signalling repressors, is a key regulator of male fertility in plants. However, the downstream genes in GA-RGA-mediated anther development remain to be characterised.

View Article and Find Full Text PDF

Flowering time and stem growth habit determine inflorescence architecture in soybean, which in turn influences seed yield. Dt1, a homolog of Arabidopsis TERMINAL FLOWER 1 (TFL1), is a major controller of stem growth habit, but its underlying molecular mechanisms remain unclear. Here, we demonstrate that Dt1 affects node number and plant height, as well as flowering time, in soybean under long-day conditions.

View Article and Find Full Text PDF

Sweetpotato weevil is among the most harmful pests in some major sweetpotato growing areas with warm climates. To enable the future establishment of safe weevil-resistance strategies, anti-weevil metabolites from sweetpotato should be investigated. In the present study, we pretreated sweetpotato leaves with exogenous chlorogenic acid and then exposed them to sweetpotato weevils to evaluate this compound's anti-insect activity.

View Article and Find Full Text PDF

Plants have to cope with various environmental stress factors which significantly impact plant physiology and secondary metabolism. Individual stresses, such as low temperature, are known to activate plant volatile compounds as a defense. However, less is known about the effect of multiple stresses on plant volatile formation.

View Article and Find Full Text PDF

Plants maintain a dynamic balance between growth and defense , and optimize allocation of resources for survival under constant pathogen infections. However, the underlying molecular regulatory mechanisms, especially in response to biotrophic bacterial infection, remain elusive. Here, we demonstrate that DELLA proteins and EDS1, an essential resistance regulator, form a central module modulating plant growth-defense tradeoffs via direct interaction.

View Article and Find Full Text PDF

Profilin functions with formin in actin assembly, a process that regulates multiple aspects of plant development and immune responses. High-level eukaryotes contain multiple isoforms of profilin, formin, and actin, whose partner-specific interactions in actin assembly are not completely understood in plant development and defense responses. To examine the functionally distinct interactions between profilin and formin, we studied all five Arabidopsis profilins and their interactions with formin by using both in vitro biochemical and in vivo cell biology approaches.

View Article and Find Full Text PDF