The global gridded crop production dataset at 10 km resolution from 2010 to 2020 (GGCP10) for maize, wheat, rice, and soybean was developed to address limitations of existing datasets characterized by coarse resolution and discontinuous time spans. GGCP10 was generated using a series of adaptively trained data-driven crop production spatial estimation models integrating multiple data sources, including statistical data, gridded production data, agroclimatic indicator data, agronomic indicator data, global land surface satellite products, and ground data. These models were trained based on agroecological zones to accurately estimate crop production in different agricultural regions.
View Article and Find Full Text PDFBuilding a more resilient food system for sustainable development and reducing uncertainty in global food markets both require concurrent and near-real-time and reliable crop information for decision making. Satellite-driven crop monitoring has become a main method to derive crop information at local, regional, and global scales by revealing the spatial and temporal dimensions of crop growth status and production. However, there is a lack of quantitative, objective, and robust methods to ensure the reliability of crop information, which reduces the applicability of crop monitoring and leads to uncertain and undesirable consequences.
View Article and Find Full Text PDF