A novel, environmentally friendly, and efficient method for determining triazine herbicides in water, tea, and juice was developed by combining magnetic dispersive micro-solid phase extraction (MD-μSPE) with magnetic dispersive liquid-liquid microextraction (MDLLME), followed by high-performance liquid chromatography (HPLC). The pretreatment process, utilized magnetic biochar (MBC) and magnetic deep eutectic solvent (MDES) as the adsorbent and extractant, respectively. Fe(NO) was loaded onto waste mushroom sticks to prepare MBC via impregnation-pyrolysis, while tri-n-butylphosphine oxide, nonanoic acid, and FeCl were combined through hydrogen bonds to form MDES.
View Article and Find Full Text PDFThe classification of the Uranoscopidae species is controversial and the belonging to Uranoscopidae was first reported in 2019. In the present study the whole genome sequence of were generated by PacBio and Illumina platforms for the first time. After assembly and correction of the high-quality PacBio data, a 527.
View Article and Find Full Text PDFEmulsive liquid-liquid microextraction (ELLME), a simple, rapid, and environmentally friendly technique, was established to identify chiral prothioconazole and its chiral metabolite in water, juice, tea, and vinegar using ultra-high-performance liquid chromatography (UPLC). Environmentally friendly extractant was mixed with pure water to prepare a high-concentration emulsion, which was added to samples to complete the emulsification and extraction in 1 s. Afterward, an electrolyte solution was added to complete the demulsification without centrifugation.
View Article and Find Full Text PDFA novel method based on homogeneous liquid-liquid extraction with deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC) for the determination of chiral fungicide triadimefon (TF) and its metabolite triadimenol (TN) in water, fruit juice, vinegar, and fermented liquor was developed in this study. The method involved using deep eutectic solvents (DES) under subzero-temperature conditions in combination with high performance liquid chromatography (HPLC). This novel technique, known as subzero-temperature homogeneous liquid-liquid extraction (STHLLE), offers several advantages, including high efficiency, time-saving, low-cost, and eco-friendliness.
View Article and Find Full Text PDFBackground: In this study, the complete mitogenome of Hemigrapsus sinensis was the first identified and analyzed.
Objective: The complete mitochondrial genome of Hemigrapsus sinensis (Brachyura, Grapsoidea, Varunidae) and its phylogenetic position within Grapsoidea.
Methods: The sample of Hemigrapsus sinensis was collected and DNA was extracted.
Imidacloprid (IMI) as a first-generation commercial neonicotinoid has been frequently detected in the environment in recent years. In this study, the efficient degradation of IMI in soil by a thermally activated persulfate (PS) process was investigated. The degradation efficiencies of IMI were in the range of 82-97% with the PS dosage of 10 mM, when the initial concentrations of IMI were 5-50 mg/kg in the soil.
View Article and Find Full Text PDFTo achieve rapid and convenient on-site pretreatment and determination of parathion-methyl, a density-adjusted liquid-phase microextraction with smartphone digital image colorimetry was established to detect parathion-methyl in food samples. In this study, the environmentally friendly biomass-derived solvent guaiacol was used as the extractant. Salt and water, as density regulators, realized the two movements (floating-sinking) of the extractant and full contact between the extractant and the sample solution to establish an environmentally friendly, fast, and efficient pretreatment method.
View Article and Find Full Text PDF