Publications by authors named "Xingkun Ao"

Thyroid cancer incidence increases worldwide annually, primarily due to factors such as ionizing radiation (IR), iodine intake, and genetics. Papillary carcinoma of the thyroid (PTC) accounts for about 80% of thyroid cancer cases. RET/PTC1 (coiled-coil domain containing 6 [CCDC6]-rearranged during transfection) rearrangement is a distinctive feature in over 70% of thyroid cancers who exposed to low doses of IR in Chernobyl and Hiroshima‒Nagasaki atomic bombings.

View Article and Find Full Text PDF

Background: Although recent studies provide mechanistic understanding to the pathogenesis of radiation induced lung injury (RILI), rare therapeutics show definitive promise for treating this disease. Type II alveolar epithelial cells (AECII) injury in various manner results in an inflammation response to initiate RILI.

Results: Here, we reported that radiation (IR) up-regulated the TNKS1BP1, causing progressive accumulation of the cellular senescence by up-regulating EEF2 in AECII and lung tissue of RILI mice.

View Article and Find Full Text PDF

Introduction: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear.

View Article and Find Full Text PDF

Salt-inducible kinase 2 (SIK2) belongs to the serine/threonine protein kinases of the AMPK/SNF1 family, which has important roles in cell cycle, tumor, melanogenesis, neuronal damage repair and apoptosis. Recent studies showed that SIK2 regulates the macrophage polarization to make a balance between inflammation and macrophage. Macrophage is critical to initiate immune regulation, however, whether SIK2 can be involved in immune regulation is not still well understood.

View Article and Find Full Text PDF

Exposure to environmental ionizing radiation (IR) is ubiquitous, and large-dose exposure to IR is known to cause DNA damage and genotoxicity which is associated with an increased risk of cancer. Whether such detrimental effects are caused by exposure to low-dose IR is still debated. Therefore, rapid and early estimation of absorbed doses of IR in individuals, especially at low levels, using radiation response markers is a pivotal step for early triage during radiological incidents to provide adequate and timely clinical interventions.

View Article and Find Full Text PDF

Radioresistance is one of the key obstacles that may lead to the failure of cancer treatment. The underlying mechanisms of radioresistance remain largely unknown; however, increasing evidence has shown that long noncoding RNAs (lncRNAs) are involved in radiotherapy resistance of several cancers. In the present study, we demonstrated that radiation-elevated transcript (RET), a newly identified lnRNA, was highly expressed in cancer cells.

View Article and Find Full Text PDF

Background: Ionizing radiation (IR) can induce pulmonary fibrosis by causing epithelial mesenchymal transition (EMT), but the exact mechanism has not been elucidated. To investigate the molecular mechanism of how radiation induces pulmonary fibrosis by altering miR-486-3p content and thus inducing EMT.

Methods: The changes of miR-486-3p in cells after irradiation were detected by RT-qPCR.

View Article and Find Full Text PDF

Understanding miRNAs regulatory roles in epithelial-mesenchymal transition (EMT) would help establish new avenues for further uncovering the mechanisms underlying radiation-induced pulmonary fibrosis (RIPF) and identifying preventative and therapeutic targets. Here, we demonstrated that miR-541-5p repression by Myeloid Zinc Finger 1 () promotes radiation-induced EMT and RIPF. Irradiation could decrease miR-541-5p expression in vitro and in vivo and inversely correlated to RIPF development.

View Article and Find Full Text PDF