High-producing cell line could improve the affordability and availability of biotherapeutic products. A post-approval production cell line change, low-titer CHO-K1S to high-titer CHO-K1SV GS-KO, was performed for a China marketed bevacizumab biosimilar IBI305. Currently, there is no regulatory guideline specifically addressing the requirements for comparability study of post-approval cell line change, which is generally regarded as the most complex process change for biological products.
View Article and Find Full Text PDFMarkers are needed to facilitate early detection of pancreatic ductal adenocarcinoma (PDAC), which is often diagnosed too late for effective therapy. Starting with a PDAC cell reprogramming model that recapitulated the progression of human PDAC, we identified secreted proteins and tested a subset as potential markers of PDAC. We optimized an enzyme-linked immunosorbent assay (ELISA) using plasma samples from patients with various stages of PDAC, from individuals with benign pancreatic disease, and from healthy controls.
View Article and Find Full Text PDFThe epigenetic reader BRD4 plays a vital role in transcriptional regulation, cellular growth control, and cell-cycle progression. Dysregulation of BRD4 function has been implicated in the pathogenesis of a wide range of cancers. However, how BRD4 is regulated to maintain its normal function in healthy cells and how alteration of this process leads to cancer remain poorly understood.
View Article and Find Full Text PDFChromatin featuring the H3 variant CENP-A at the centromere is critical for its mitotic function and epigenetic maintenance. Assembly of centromeric chromatin is restricted to G1 phase through inhibitory action of Cdk1/2 kinases in other phases of the cell cycle. Here, we identify the two key targets sufficient to maintain cell-cycle control of CENP-A assembly.
View Article and Find Full Text PDFTen-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each individual base forms and functions in epigenetic regulation, and prompts the question of whether TET enzymes primarily serve to generate hmC or are adapted to produce fC and caC as well. By mutating a single, conserved active site residue in human TET2, Thr1372, we uncovered enzyme variants that permit oxidation to hmC but largely eliminate fC and caC.
View Article and Find Full Text PDFLysine methylation is a common protein post-translational modification dynamically mediated by protein lysine methyltransferases (PKMTs) and protein lysine demethylases (PKDMs). Beyond histone proteins, lysine methylation on non-histone proteins plays a substantial role in a variety of functions in cells and is closely associated with diseases such as cancer. A large body of evidence indicates that the dysregulation of some PKMTs leads to tumorigenesis via their non-histone substrates.
View Article and Find Full Text PDFInappropriate activation of the receptor tyrosine kinase EGFR contributes to a variety of human malignancies. Here we show a mechanism to induce vulnerability to an existing first line treatment for EGFR-driven cancers. We find that inhibiting the palmitoyltransferase DHHC20 creates a dependence on EGFR signaling for cancer cell survival.
View Article and Find Full Text PDFThe significance of non-histone lysine methylation in cell biology and human disease is an emerging area of research exploration. The development of small molecule inhibitors that selectively and potently target enzymes that catalyze the addition of methyl-groups to lysine residues, such as the protein lysine mono-methyltransferase SMYD2, is an active area of drug discovery. Critical to the accurate assessment of biological function is the ability to identify target enzyme substrates and to define enzyme substrate specificity within the context of the cell.
View Article and Find Full Text PDFModification of cytosine-guanine dinucleotides (CpGs) is a key part of mammalian epigenetic regulation and helps shape cellular identity. Tet enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) in CpGs to 5-hydroxymethylcytosine (hmC), or onward to 5-formylcytosine (fC) or 5-carboxylcytosine (caC). The multiple mC oxidation products, while intricately linked, are postulated to play independent epigenetic roles, making it critical to understand how the products of stepwise oxidation are established and maintained.
View Article and Find Full Text PDFAltered nitric oxide (•NO) metabolism underlies cancer pathology, but mechanisms explaining many •NO-associated phenotypes remain unclear. We have found that cellular exposure to •NO changes histone posttranslational modifications (PTM) by directly inhibiting the catalytic activity of JmjC-domain containing histone demethylases. Herein, we describe how •NO exposure links modulation of histone PTMs to gene expression changes that promote oncogenesis.
View Article and Find Full Text PDFThe gene encoding the lysine-specific histone methyltransferase KMT2D has emerged as one of the most frequently mutated genes in follicular lymphoma and diffuse large B cell lymphoma; however, the biological consequences of KMT2D mutations on lymphoma development are not known. Here we show that KMT2D functions as a bona fide tumor suppressor and that its genetic ablation in B cells promotes lymphoma development in mice. KMT2D deficiency also delays germinal center involution and impedes B cell differentiation and class switch recombination.
View Article and Find Full Text PDFHistone post-translational modifications contribute to chromatin function through their chemical properties which influence chromatin structure and their ability to recruit chromatin interacting proteins. Nanoflow liquid chromatography coupled with high resolution tandem mass spectrometry (nanoLC-MS/MS) has emerged as the most suitable technology for global histone modification analysis because of the high sensitivity and the high mass accuracy of this approach that provides confident identification. However, analysis of histones with this method is even more challenging because of the large number and variety of isobaric histone peptides and the high dynamic range of histone peptide abundances.
View Article and Find Full Text PDFMS-based proteomics has become the most utilized tool to characterize histone PTMs. Since histones are highly enriched in lysine and arginine residues, lysine derivatization has been developed to prevent the generation of short peptides (<6 residues) during trypsin digestion. One of the most adopted protocols applies propionic anhydride for derivatization.
View Article and Find Full Text PDFThe cerebral cavernous malformation (CCM) pathway is required in endothelial cells for normal cardiovascular development and to prevent postnatal vascular malformations, but its molecular effectors are not well defined. Here we show that loss of CCM signaling in endocardial cells results in mid-gestation heart failure associated with premature degradation of cardiac jelly. CCM deficiency dramatically alters endocardial and endothelial gene expression, including increased expression of the Klf2 and Klf4 transcription factors and the Adamts4 and Adamts5 proteases that degrade cardiac jelly.
View Article and Find Full Text PDFLysine methylation mediated by methyltransferase enzymes is present on multiple proteins throughout the cell; however, methods to uncover and characterize global protein lysine methylation patterns do not readily exist. Here we developed pan-specific methyl lysine antibodies that we utilized in immunoprecipitation experiments coupled with mass spectrometry to yield one of the first large-scale surveys of protein lysine methylation in vivo. In total, 552 different lysine methylation sites were determined, making this one of the most comprehensive global studies published to date.
View Article and Find Full Text PDFHistone lysine and arginine methylation involved in gene activation and silencing is dynamically regulated. However, partly limited to the research technologies previously available, the dynamics of global histone methylation on a site-specific basis have not been fully pursued. Heavy methyl-SILAC (Stable Isotope Labeling of Amino Acids in Cell Culture) labeling provides a remarkable signpost to distinguish the preexisting and newly generated methyl marks on histones.
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
August 2011
Although Leptospira interrogans is unable to utilize glucose as its carbon/energy source, the LA_1437 gene of L. interrogans serovar Lai potentially encodes a group III glucokinase (GLK). The L.
View Article and Find Full Text PDFThe virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601.
View Article and Find Full Text PDFFor large-scale analysis of phosphorylation at proteome-wide scale, a variety of affinity-based strategies have been developed to enrich phosphopeptide. Because each method differed in their specificity of isolation, the global and unbiased enrichment of phosphopeptides remains a major technical challenge in phosphoproteomics. In the present work, we demostrate that the phosphopeptide enrichment method based on an online continuous pH gradient in a strong anion exchange column (SAX method) is highly complementary to the method based on titanium dioxide (TiO2) affinity enrichment.
View Article and Find Full Text PDFLeptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem mass spectra, we revised the genome annotation of Leptospira interrogans serovar Lai, a free-living pathogenic spirochete responsible for leptospirosis, providing substantial peptide evidence for novel genes and new gene boundaries. Subsequently, we presented a high-coverage proteome analysis of protein expression and multiple posttranslational modifications (PTMs).
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2008
We present a new preprocessing method, PeakSelect, to improve the accuracy and efficiency of Tandem Mass-Spec peptide (protein) identification. The fundamental difference between noise and fragment ions in spectra is that ions have isotopes but noise does not. We propose a new and important concept of an Isotope Pattern Vector (IPV) which characterizes the isotope cluster of fragment ions.
View Article and Find Full Text PDFMesangial cells (MC) play an important role in maintaining the structure and function of the glomerulus. The proliferation of MC is a prominent feature of many kinds of glomerular disease. The first reference 2-DE maps of rat mesangial cells (RMC), stained with silver staining or Pro-Q Diamond dye, have been established here to describe the proteome and phosphoproteome of RMC, respectively.
View Article and Find Full Text PDF