Background: Hip replacement surgeries are increasing in demand, requiring rigorous improvements to a mature surgical protocol. Postoperative patient dissatisfaction mainly stems from postoperative complications resulting from the inappropriate selection of prostheses to meet the needs of each patient. This results in prosthesis loosening, hospital-related fractures, and postoperative complex pain, which can all be attributed to inappropriate sizing.
View Article and Find Full Text PDFObjective: Segmental bone defect animal studies require stable fixation which is a continuous experimental challenge. Large animal models are comparable to the human bone, but with obvious drawbacks of housing and costs. Our study aims to utilize CAD and 3D printing in the construction of a stable and reproducible segmental bone defect animal mode.
View Article and Find Full Text PDFObjective: To evaluate the feasibility and utility of computer-aided design (CAD) in surgical treatment of leg length discrepancy (LLD) using monorail external fixators.
Methods: In the present case series, we retrospectively analyzed seven patients diagnosed with LLD who were surgically treated using a monorail external fixator between June 2018 and August 2020. A personalized surgical emulation of each patient was designed using CAD based on preoperative CT scans to measure limb parameters.