Publications by authors named "Xinghua Guan"

Long-term patency and ability for revascularization remain challenges for small-caliber blood vessel grafts to treat cardiovascular diseases clinically. Here, a gelatin/heparin coated bio-inspired polyurethane composite fibers-based artificial blood vessel with continuous release of NO and biopeptides to regulate vascular tissue repair and maintain long-term patency is fabricated. A biodegradable polyurethane elastomer that can catalyze S-nitrosothiols in the blood to release NO is synthesized (NPU).

View Article and Find Full Text PDF

Restoration of blood-brain barrier (BBB) dysfunction, which drives worse outcomes of ischemic stroke, is a potential target for therapeutic opportunities, whereas a sealed BBB blocks the therapeutics entrance into the brain, making the BBB protection strategy paradoxical. Post ischemic stroke, hypoxia/hypoglycemia provokes the up-regulation of transmembrane glucose transporters and iron transporters due to multiple metabolic disorders, especially in brain endothelial cells. Herein, we develop a myricetin oligomer-derived nanostructure doped with Ce to bypass the BBB which is cointermediated by glucose transporters and iron transporters such as glucose transporters 1 (GLUT1), sodium/glucose cotransporters 1 (SGLT1), and transferrin(Tf) reporter (TfR).

View Article and Find Full Text PDF

Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration.

View Article and Find Full Text PDF

The brain and liver are more susceptible to ischemia and reperfusion (IR) injury (IRI), which triggers the reactive oxygen species (ROS) burst and inflammatory cascade and results in severe neuronal damage or hepatic injury. Moreover, the damaged endothelial barrier contributes to proinflammatory activity and limits the delivery of therapeutic agents such as some macromolecules and nanomedicine despite the integrity being disrupted after IRI. Herein, we constructed a phenylboronic-decorated chitosan-based nanoplatform to deliver myricetin, a multifunctional polyphenol molecule for the treatment of cerebral and hepatic ischemia.

View Article and Find Full Text PDF

Inflammation manipulation and extracellular matrix (ECM) remodeling for healthy tissue regeneration are critical requirements for tissue engineering scaffolds. To this end, the bioactive polycaprolactone (PCL)-based scaffolds are fabricated to release aprotinin and thymosin β4 (Tβ4) in a programmable manner. The core part of the fiber is composed of hyaluronic acid and Tβ4, and the shell is PCL, which is further coated with heparin/gelatin/aprotinin to enhance biocompatibility.

View Article and Find Full Text PDF

Long-term presence of M1 macrophages causes serious foreign body reaction (FBR), which is the main reason for the failure of biological scaffold integration. Inducing M2 polarization of macrophages near scaffolds to reduce foreign body response has been widely researched. In this work, inspired by the special capability of tumor exosomes in macrophages M2 polarization, we integrate tumor-derived exosomes into biological scaffolds to minimize the FBR.

View Article and Find Full Text PDF

Hypercoagulation threatens the lives of cancer patients and cancer progression. Platelet overactivation attributes to the tumor-associated hypercoagulation and maintenance of the tumor endothelial integrity, leading to limited intratumoral perfusion of nanoagents into solid tumors in spite of the enhanced penetration and retention effect (EPR). Therefore, the clinical application of nanotherapeutics in solid cancer still faces great challenges.

View Article and Find Full Text PDF

Platelets activation and hypercoagulation induced by tumor cell-specific thrombotic secretions such as tissue factor (TF) and cancer procoagulant (CP), microparticles (MPs), and cytokines not only increase cancer-associated thrombosis but also accelerate cancer progress. In addition, the tumor heterogeneity such avascular areas, vascular occlusion and interstitial fluid pressure still challenges efficient drug delivery into tumor tissue. To overcome these adversities, we herein present an antiplatelet strategy based on a proteinic nanoparticles co-assembly of l-arginine (LA) and photosensitizer IR783 for local NO release to inhibit the activation of tumor-associated platelets and normalize angiogenesis, suppressing thrombosis and increasing tumoral accumulation of the nanoagent.

View Article and Find Full Text PDF

Ischemic stroke is caused by cerebrovascular stenosis or occlusion. Excessive reactive oxygen species (ROS) are the focus-triggering factor of irreversible injury in ischemic regions, which result in harmful cascading effects to brain tissue, such as inflammation and microthrombus formation. In the present work, we designed nanodelivery systems (NDSs) based on MnO loaded with Ginkgolide B (GB) for restoring the intracerebral microenvironment in ischemic stroke, such as ROS scavenging, O elevation, thrombus inhibition and damage repair.

View Article and Find Full Text PDF

This work reported the dynamic effects of water droplet impact on flat, porous and pincushion structure films of star shaped polyhedral oligomeric silsesquioxane (POSS) fluorinated acrylates, POSS-poly(trifluoroethyl methacrylate) (POSS-(PTFEMA)) and POSS-(poly(trifluoroethyl methacrylate)-b-poly(methyl methacrylate)) (POSS-(PTFEMA-b-PMMA)), using the breath figure method. The porous and pincushion structure films with different surface chemical compositions were obtained by controlling the copolymer structure and temperature and by stripping of the surface. The water contact angles on the different films were measured, and the water droplets on the pincushion structure films when reversed at 45°, 90°, 135° and 180° were also studied.

View Article and Find Full Text PDF