Publications by authors named "Xinghong Duo"

In this study, a targeted graphene quantum dot-cationic polymer composite gene vector with endothelial cell-targeting CAG peptide was successfully designed and prepared. This vector could efficiently bind and deliver the therapeutic gene pZNF580 to endothelial cells (HUVECs). At a concentration of less than 40 μg mL, the results of the CCK-8 assay showed that the relative cell viability of each composite gene vector was greater than 80%, and the results of the flow cytometry assay showed that C-GQDs-PEI-PEG-CAG/pZNF580 (88.

View Article and Find Full Text PDF

Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation.

View Article and Find Full Text PDF

Cationic copolymers are widely used in gene delivery as a non-viral gene vector, but their applications are limited by low transfection efficiency and high cytotoxicity. In order to enhance the transfection efficiency of copolymer micelles to endothelial cells (HUVECs) and reduce their cytotoxicity, this study synthesized an amphipathic multi-targeted copolymer micelle delivery system PCLMD-PPEGMA-NLS-TAT-REDV (TCMs). Gel test results showed that TCMs showed good pZNF580 binding ability and could effectively load the pZNF580 plasmid.

View Article and Find Full Text PDF

Bacterial pneumonia is one of the major threats in clinical practice, and the reactive oxygen species (ROS) generated at the infection site can exacerbate the damage. Currently, conventional antibiotic therapies have low utilization, and their excessive use can result in substantial toxicity. Nanocarrier systems provide an ideal approach for treating bacterial infection by facilitating more efficient utilization of antibiotics.

View Article and Find Full Text PDF

In order to improve the transfection efficiency and reduce the cytotoxicity of gene carriers, many strategies have been used to develop novel gene carriers. In this study, five complex micelles (MSP(2 k), MSP(4 k), MSP(6 k), MSP(8 k), and MSP(10 k)) were prepared from methoxy-poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (mPEG-b-PLGA) and sorbitol-poly(d,l-lactide-co-glycolide)-graft-PEI (sorbitol-PLGA-g-PEI, where the designed molecular weights of PLGA chains were 2 kDa, 4 kDa, 6 kDa, 8 kDa, and 10 kDa, respectively) copolymers by a self-assembly method, and the mass ratio of mPEG-b-PLGA to sorbitol-PLGA-g-PEI was 1/3. These complex micelles and their gene complexes had appropriate sizes and zeta potentials, and pEGFP-ZNF580 (pDNA) could be efficiently internalized into EA.

View Article and Find Full Text PDF

In recent years, gene therapy has become a promising technology to enhance endothelialization of artificial vascular grafts. The ideal gene therapy requires a gene carrier with low cytotoxicity and high transfection efficiency. In this paper, we prepared a biodegradable cationic copolymer poly(d,l-lactide--glycolide)-graft-PEI (PLGA--PEI), grafted Cys-Ala-Gly-Trp (CAGW) peptide onto this copolymer via the thiol-ene Click-reaction, and then prepared micelles by a self-assembly method.

View Article and Find Full Text PDF