Fatigue cracking is a common form of flexible pavement distress, which generally starts and spreads through bitumen. To address this issue, self-healing elastomer (SHE) modified bitumens were elaborated to assess whether these novel materials can overcome the neat asphalt (NA) fatigue performance and whether the current failure definition, failure criterion, and fatigue-restoration criteria can fit their performance. All bitumens were subjected to short-term and long-term aging.
View Article and Find Full Text PDFComposite modification technology is widely used in the materials field. To enhance the property of polyurethane modified asphalt and realize its application in road engineering, the bone glue/polyurethane composite modified asphalt (CMA) was prepared using bone glue, polyurethane, and neat asphalt in this research. The bone glue content ranges 5-10%, that of the polyurethane is 1-5%.
View Article and Find Full Text PDFMaterials (Basel)
October 2020
Rubberized asphalt (RA) has been successfully applied in road engineering due to its excellent performance; however, the most widely used rubber content is about 20%.To improve the content of waste rubber and ensure its performance, seven rubberized asphalts with different powder content were prepared by high-speed shearing. Firstly, penetration, softening point, and ductility tests were carried out to investigate the conventional physical features of high-content rubberized asphalt (HCRA).
View Article and Find Full Text PDFStrength and fatigue life are essential parameters of pavement structure design. To accurately determine the pavement structure resistance of rubber asphalt mixture, the strength tests at various temperatures, loading rate, and fatigue tests at different stress levels were conducted in this research. Based on the proposed experiments, the change law of rubber asphalt mixture strength with different temperatures and loading rates was revealed.
View Article and Find Full Text PDFAccording to the theory of molecular design, crumb rubber was grafting activated with acrylamide and then used as asphalt binder modifier. An orthogonal three-factor, three-level test was designed to optimize the preparation process of modified asphalt. Softening point, viscosity, rutting factor, ductility, stiffness modulus and creep speed index were selected as evaluation indicators to study the effects of rubber content, shear time and shear temperature by variance analysis and range analysis.
View Article and Find Full Text PDF