Publications by authors named "Xingfu Song"

Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.

View Article and Find Full Text PDF

In this study, pig manure rich in phosphorus was used as the recovery object, In order to realize the maximum recovery of phosphorus resources in pig manure, this study established a phosphorus recovery route combining the electrochemical method with the Vivianite method using sacrificial iron anode. And in order to obtain phosphorus rich supernatant, pig manure was treated with different pH values, and the changes in phosphorus components and metal content in the liquid phase were mainly investigated; Graded phosphorus components and microbial communities in the solid phase; Finally, the effect of electrolytic recovery of phosphorus from fermentation supernatant was studied. The results showed that the highest total phosphorus (TP) content in the liquid phase follows a trend of acidity > control > alkalinity; The analysis of the results of solid-phase phosphorus fractionation extraction shows that acidic conditions are more conducive to the release of Non-apatite inorganic phosphorus (NAIP) and Apatite inorganic phosphorus (AP); The microbial community promotes the release of phosphorus by participating in the decomposition of fermentation substrates; The analysis of the change of metal content in the liquid phase before and after electrolysis showed that the two chamber electrolytic cell can not remove other metal components while recovering the vivianite; More than 90% of the phosphorus in the supernatant after fermentation was recovered by electrolysis.

View Article and Find Full Text PDF

Ultrafine particle classification can be realized using hydrocyclones with novel structures to overcome the limitations of conventional hydrocyclones with tangential inlets or cone structures. Herein, the hydrocyclones with different inlet structures and cone angles were investigated for classifying ultrafine particles. Computational fluid dynamics (CFD) simulations were performed using the Eulerian-Eulerian method, and ultrafine MnO powder was used as a case study.

View Article and Find Full Text PDF

There is a huge demand for the highly selective separation of HNO and HCl in many industries, and solvent extraction is considered a feasible method. In this article, DFT calculations were performed to investigate the interactions between acids and extractants including alcohols, ketones, phosphorus, and amines. One of the significant findings to emerge from this study is that amines bind to acids through ion association.

View Article and Find Full Text PDF

As water scarcity has become a serious global issue, seawater reverse osmosis (SWRO) is considered as a promising technique to expand traditional water supplies. However, the reject brine from SWRO systems is still a major environmental concern. In this research, the monovalent selective electrodialysis (S-ED) was used to separate and recover one of the primary components, i.

View Article and Find Full Text PDF

Three-dimensional electrochemical oxidation (3D-ECO) technology is considered as one of the most promising advanced oxidation processes for degrading refractory organic pollutants. However, the preparation of the particle electrodes (PEs) is a key factor for industrial applications. In this study, a new AlO-based PE was proposed for 3D-ECO system.

View Article and Find Full Text PDF

The attachment energy (AE) model was employed to investigate the growth morphology of LiCO under vacuum and water solvent conditions by molecular dynamics simulations. The attachment energy calculation predicted the growth morphology in vacuum dominated by the (1 1 -1), (0 0 2) and (1 1 0) crystal faces. A modified attachment energy model, accounting for the surface chemistry and the corresponding topography of the habit crystal plane, was established to predict the morphological importance of crystal faces in a water solvent.

View Article and Find Full Text PDF

The hydrodynamic properties and shear stresses experienced by a membrane bioreactor (MBR) are directly related to its rate of membrane fouling. In this study, computational fluid dynamic models have been combined with cold model PIV experimental studies to optimize the performance properties of MBRs. The effects of membrane module height, number of aeration tubes and membrane spacing on liquid phase flow rates, gas holdup and shear stresses at the membrane surface have been investigated.

View Article and Find Full Text PDF

This paper mainly focused on the reaction crystallization production of KSO to support the brine resource development in Western China. The process parameters of material ratio, water addition, agitation rate, and operating temperature were investigated to clarify their sensitivity effects on the objectives of product purity, recovery and crystal size. The results show that the mass ratio of leonite ore to KCl should be close to the operating point of equivalent reaction so that the conversion is complete.

View Article and Find Full Text PDF

A high-efficiency hydrocyclone was designed by response surface methodology to evaluate the recycling of acid hydrolysis residues from titanium dioxide (TiO) production as a study case. TiO is an important product and the world's best white pigment. During its production from ilmenite (FeTiO) by the sulfuric acid method, the incomplete reaction produces large amounts of residue, which also contain unreacted ilmenite.

View Article and Find Full Text PDF

In view of the importance of environmental protection and resource recovery, recycling of spent lithium-ion batteries (LIBs) and electrode scraps generated during manufacturing processes is quite necessary. An environmentally sound leaching process for the recovery of Li, Ni, Co, and Mn from spent LiNiCoMnO-based LIBs and cathode scraps was investigated in this study. Eh-pH diagrams were used to determine suitable leaching conditions.

View Article and Find Full Text PDF

Cathode materials are difficult to separate from Al-foil substrates during the recycling of spent lithium-ion batteries (LIBs), because of the strong bonding force present. In this study, ultrasonic cleaning was used to separate and recycle these cathode materials. The mechanism of separation was ascribed to the dissolution of polyvinylidene fluoride (PVDF) and the cavitation caused by ultrasound.

View Article and Find Full Text PDF

Objective: To study the inhibitory effect of Akt inhibitor deguelin on PC-3 human prostate cancer cell lines and its possible mechanism.

Methods: PC-3 human prostate cancer cells were cultured in deguelin at the concentrations of 10, 100, 500 and 1 000 nmol/L for 24, 48 and 72 hours, respectively. Then the inhibitory effect of deguelin on the proliferation of the PC-3 cells was determined by MTT assay and that on the cell cycle was detected by flow cytometry.

View Article and Find Full Text PDF

Numerous studies have shown that mammalian target of rapamycin (mTOR) inhibitor activates Akt signaling pathway via a negative feedback loop while inhibiting mTORC1 signaling. In this report, we focused on studying the role of mTORC1 and mTORC2 in rapamycin-mediated Akt and ERK phosphorylation, and the antitumor effect of rapamycin in cancer cells in combination with Akt and ERK inhibitors. Moreover, we analyzed the effect of mTORC1 and mTORC2 on regulating cell cycle progression.

View Article and Find Full Text PDF

Background: Lung cancer is one of the most malignant tumors, representing a significant threat to human health. Lung cancer patients often exhibit tumor cell invasion and metastasis before diagnosis which often render current treatments ineffective. Here, we investigated the effect of staurosporine, a potent protein kinase C (PKC) inhibitor on the mobility and invasiveness of human lung adenocarcinoma A549 cells.

View Article and Find Full Text PDF

Objective: Human papillomavirus (HPV) is the essential causative factor in cervical carcinogenesis, and apoptosis inhibition is one of the key features of HPV-induced malignant transformation. This study is to investigate the possible cause-effect association between high-risk HPV and cellular FLICE-like inhibitory protein (c-FLIP), an important apoptosis regulator, during cervical carcinogenesis.

Methods: A series of 80 archival samples, including 20 squamous cervical carcinomas (SCC) 54 cervical intraepithelial neoplasia (CIN) lesions and 6 normal cervical tissues, were subjected for c-FLIP immunohistochemical staining and HPV HC-II analysis.

View Article and Find Full Text PDF