Spectrochim Acta A Mol Biomol Spectrosc
January 2024
Room temperature phosphorescent (RTP) Carbon Dots have been capturing increasing attention in recent years, while building a general method to adjust the emission color of RTP carbon dots is still a big challenge. Herein we report a simple method that combine the carbon nanodots and dyes (R6G and DCF) in SiO nanosphere to get a series of multicolor RTP nanodots (CD@SiO@dye) with long lifetime in aqueous solution. Leverage on chitosan quaternary ammonium as matrix and diethylenetriamine as N-doping resource to form a cross-linked skeleton as a luminescent center (namely CD), and a rigid network is formed by silica encapsulation (CD@SiO) to restrict the non-radiative transition process to generate the phosphorescence.
View Article and Find Full Text PDFFour advanced oxidation processes (UV/TiO(2), UV/IO(4)(-), UV/S(2)O(8)(2-), and UV/H(2)O(2)) were tested for their ability to mineralize naphthenic acids to inorganic carbon in a model oil sands process water containing high dissolved and suspended solids at pH values ranging from 8 to 12. A medium pressure mercury (Hg) lamp was used, and a Quartz immersion well surrounded the lamp. The treatment goal of 5mg/L naphthenic acids (3.
View Article and Find Full Text PDFThis study investigated the TiO2 photocatalytic degradation of aqueous ammonia (NH4+/NH3) in the presence of surfactants and monosaccharides at pH approximately 10.1. Initial rates of NH4+/NH3 photocatalytic degradation decreased by approximately 50-90% in the presence of anionic, cationic, and nonionic surfactants and monosaccharides.
View Article and Find Full Text PDFBatch experiments were conducted to study the effects of titanium dioxide (TiO2) concentration and pH on the initial rates of photocatalytic oxidation of aqueous ammonium/ ammonia (NH4+/NH3) and nitrite (NO2-) in UV-illuminated TiO2 suspensions. While no simple kinetic model could fit the data at lower TiO2 concentrations, at TiO2 concentrations > or = 1 g/L, the experimental data were consistent with a model assuming consecutive first-order transformation of NH4+/NH3 to NO2- and NO2- to nitrate (NO3-). For TiO2 concentrations > or = 1 g/L, the rate constants for NO2 photocatalytic oxidation to NO3 were far more dependent on TiO2 concentration than were those for NH4+/NH3 oxidation to NO2-, suggesting that, without sufficient TiO2, complete oxidation of NH4+/NH3 to NO3- will not occur.
View Article and Find Full Text PDF