Polyvinylidene fluoride (PVDF) has unique electrochemical oxidation resistance and is the only binder for high-voltage cathode materials in the battery industry for a long time. However, PVDF still has some drawbacks, such as environmental limitations on fluorine, strict requirements for environmental humidity, weak adhesion, and poor lithium ion conductivity. Herein, the long-standing issues associated with high-voltage lithium cobalt oxide (LiCoO; LCO) are successfully addressed by incorporating phenolphthalein polyetherketone (PEK-C) and phenolphthalein polyethersulfone (PES-C) as binder materials.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2024
This paper describes a novel method for detecting and visualizing vortex structures in unsteady 2D fluid flows. The method is based on an interactive local reference frame estimation that minimizes the observed time derivative of the input flow field v(x, t). A locally optimal reference frame w(x, t) assists the user in the identification of physically observable vortex structures in Observed Line Integral Convolution (LIC) visualizations.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2022
State-of-the-art computation and visualization of vortices in unsteady fluid flow employ objective vortex criteria, which makes them independent of reference frames or observers. However, objectivity by itself, although crucial, is not sufficient to guarantee that one can identify physically-realizable observers that would perceive or detect the same vortices. Moreover, a significant challenge is that a single reference frame is often not sufficient to accurately observe multiple vortices that follow different motions.
View Article and Find Full Text PDFInt J Nanomedicine
March 2018
Our previous study revealed that mesoporous Ca-Si-based materials exhibited excellent osteoconduction because dissolved ions could form a layer of hydroxycarbonate apatite on the surface of the materials. However, the biological mechanisms underlying bone regeneration were largely unknown. The main aim of this study was to evaluate the osteogenic ability of large-pore mesoporous Ca-Si-based bioceramics (LPMSCs) by alkaline phosphatase assay, real-time PCR analysis, von Kossa, and alizarin red assay.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
November 2018
Mesoporous bioactive glass (MBG) is a good scaffold for bone regeneration. In this study, amino functionalized MBG (N-MBG) was used as a model scaffold to examine the effect of the scaffold to bone marrow stromal cells (BMSCs) and macrophages. The MTT results revealed that the proliferation of BMSCs from ovariectomized rabbits was enhanced by N-MBG.
View Article and Find Full Text PDFNatural antibodies are used widely for various applications such as in biomedical analysis, protein separation, and targeted-drug delivery, but they suffer from high cost and low stability. In this study, we developed a facile approach for the construction of antibody-like binding sites in a porous silica solid for efficient separation of bovine serum albumin (BSA) based on large-pore silica particles (LPSPs). This was accomplished by grafting two types of organosilane monomers, 3-aminopropyltriethoxylsilane (APTES) and octyltrimethoxysilane (OTMS), to provide hydrogen bonds or hydrophobic interactions with BSA through molecular imprinting technology.
View Article and Find Full Text PDFA novel type of adsorbent for the selective recognition and adsorption of trace Pb from aqueous solutions has been successfully constructed simply by grafting molecularly imprinted polymers (MIPs) onto hollow mesoporous silica (HMS). Attractively, the HMS loaded with MIPs (H-MIPs) exhibits a fast adsorption kinetics, marked adsorption capacity of 40.52mg/g and extremely high selectivity toward Pb over Cu, Zn, Co, Mn and Ni, and the selectivity coefficients have been determined to be as high as 50.
View Article and Find Full Text PDFMesoporous Ca-Si-based bioceramics represented by mesoporous bioactive glasses (MBG) have attracted much attention in the field of bone tissue regeneration due to their excellent bioactivity, biocompatibility and osteoconductivity. However, the small mesopores (<7 nm) have greatly hindered their ability to encapsulate macromolecular proteins with ability to significantly induce bone growth. To solve this problem, a novel type of large-pore mesoporous silica (LPMS) was first synthesized using a simple one-step method at high temperatures.
View Article and Find Full Text PDFMesoporous bioactive glass (MBG), which possesses excellent bioactivity, biocompatibility and osteoconductivity, has played an important role in bone tissue regeneration. However, it is difficult to prepare MBG scaffolds with high compressive strength for applications in bone regeneration; this difficulty has greatly hindered its development and use. To solve this problem, a simple powder processing technique has been successfully developed to fabricate a novel type of MBG scaffold (MBGS).
View Article and Find Full Text PDFIn this work, a novel composite scaffold was constructed by combining mesoporous bioactive glass (MBG) and calcium phosphate cement (CPC) materials using a simple centrifugal embedding approach. Furthermore, recombinant human bone morphogenetic protein-2 (rhBMP-2) was facilely incorporated into this scaffold through a freeze-drying process. It is found that the resultant scaffold not only presents a hierarchical pore structure (interconnected pores of around 200 μm and 2-10 μm) and a sufficient compressive strength (up to 1.
View Article and Find Full Text PDFUniform mesoporous zeolite ZSM-5 crystals have been successfully fabricated through a simple hydrothermal synthetic method by utilizing ammonium-modified chitosan and tetrapropylammonium hydroxide (TPAOH) as the meso- and microscale template, respectively. It was revealed that mesopores with diameters of 5-20 nm coexisted with microporous network within mesoporous ZSM-5 crystals. Ammonium-modified chitosan was demonstrated to serve as a mesoporogen, self-assembling with the zeolite precursor through strong static interactions.
View Article and Find Full Text PDF