A better understanding of the phenotypic heterogeneity of protoplasts requires a comprehensive analysis of the morphological and metabolic characteristics of many individual cells. In this study, we developed a microfluidic flow cytometry with fluorescence sensor for functional characterization and phenotyping of protoplasts to allow an unbiased assessment of the influence of environmental factors at the single cell level. First, based on the measurement of intracellular homeostasis of reactive oxygen species (ROS) with a DCFH-DA dye, the effects of various external stress factors such as HO, temperature, ultraviolet (UV) light, and cadmium ions on intracellular ROS accumulation in Arabidopsis mesophyll protoplasts were quantitatively investigated.
View Article and Find Full Text PDFBiofilm formation in reclaimed water (RW) distribution systems presents significant technical challenges to RW utilization. Two main technologies to control biofilm formation, microbial antagonism (MA) and electrochemical oxidation (EO), are not yet widely used in drip irrigation systems (DIS) and their mechanisms of action need further clarification. In this study, we first showed that the MA and EO treatments reduced biofilm formation by about 62% and 68%, respectively, and extracellular polymeric substance (EPS) content by 14% and 49%, respectively, in biofilms compared with raw RW type 1 (R-RW1) in unused pipes, thus effectively improving the performance of DIS.
View Article and Find Full Text PDF