Background: Safflower (Carthamus tinctorius L.) is an oilseed crop with substantial medicinal and economic value. However, the methods for constructing safflower core germplasm resources are limited, and the molecular mechanisms of lipid biosynthesis in safflower seeds are not well understood.
View Article and Find Full Text PDFBackground: Drought stress has significantly hampered agricultural productivity worldwide and can also result in modifications to DNA methylation levels. However, the dynamics of DNA methylation and its association with the changes in gene transcription and alternative splicing (AS) under drought stress are unknown in linseed, which is frequently cultivated in arid and semiarid regions.
Results: We analysed AS events and DNA methylation patterns in drought-tolerant (Z141) and drought-sensitive (NY-17) linseed under drought stress (DS) and repeated drought stress (RD) treatments.
Background: Oil flax (linseed, Linum usitatissimum L.) is one of the most important oil crops., However, the increases in drought resulting from climate change have dramatically reduces linseed yield and quality, but very little is known about how linseed coordinates the expression of drought resistance gene in response to different level of drought stress (DS) on the genome-wide level.
View Article and Find Full Text PDFFlax has been cultivated for its oil and fiber for thousands of years. However, it remains unclear how the modifications of agronomic traits occurred on the genetic level during flax cultivation. In this study, we conducted genome-wide variation analyses on multiple accessions of oil-use, fiber-use, landraces, and pale flax to identify the genomic variations during flax cultivation.
View Article and Find Full Text PDFOil produced by castor (Ricinus communis) has broad industrial applications. However, knowledge on the genetic diversity, especially genetic alterations that occurred during domestication and subsequent traits selection, of this oil crop is limited. Here, our population genomics analyses show that the Chinese castors have developed a geographic pattern, classified into the southern-, the middle-, and the northern-China groups.
View Article and Find Full Text PDFBackground: Ricinus communis is a highly economically valuable oil crop plant from the spurge family, Euphorbiaceae. However, the available reference genomes are incomplete and to date studies on ricinoleic acid biosynthesis at the transcriptional level are limited.
Results: In this study, we combined PacBio single-molecule long read isoform and Illumina RNA sequencing to identify the alternative splicing (AS) events, novel isoforms, fusion genes, long non-coding RNAs (lncRNAs) and alternative polyadenylation (APA) sites to unveil the transcriptomic complexity of castor beans and identify critical genes related to ricinoleic acid biosynthesis.
The castor plant (Ricinus communis L.) is a versatile industrial oilseed crop with a diversity of sex patterns, its hybrid breeding for improving yield and high purity is still hampered by genetic instability of female and poor knowledge of sex expression mechanisms. To obtain some hints involved in sex expression and provide the basis for further insight into the molecular mechanisms of castor plant sex determination, we performed DGE analysis to investigate differences between the transcriptomes of apices and racemes derived from female (JXBM0705P) and monoecious (JXBM0705M) lines.
View Article and Find Full Text PDFCadmium (Cd) and dichlorodiphenyltrichloroethane (DDT) or its metabolite residues are frequently detected in agricultural soils and food, posing a threat to human health. The objective of this study was to compare the ability of 23 genotypes of Ricinus communis in mobilizing and uptake of Cd and DDTs (p,p'-DDT, o,p'-DDT, p,p'-DDD and p,p'-DDE) in the co-contaminated soil. The plant genotypes varied largely in the uptake and accumulation of DDTs and Cd, with mean concentrations of 0.
View Article and Find Full Text PDF