We propose a design of the compact high-resolution photonic crystal (PhC) spectrometer with a wide working bandwidth based on both super-prism and local-super-collimation (LSC) effects. The optimizing methods, finding the ideal incident angle and oblique angle of PhC for a wider working bandwidth and ideal incident beam width and PhC size for a certain resolution requirement, are developed. Besides the theoretical work, for the first time, the experiment of such a PhC spectrometer is conducted in the microwave frequency range, and the beam-splitting effects for different frequencies in a wide working bandwidth agree very well with the theoretical predictions.
View Article and Find Full Text PDF