Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat SCI. However, each of these strategies fails to obtain desirable outcomes due to their respective limitations.
View Article and Find Full Text PDFSpinal cord injury (SCI) is an overwhelming and incurable disabling condition, for which increasing forms of multifunctional biomaterials are being tested, but with limited progression. The promising material should be able to fill SCI-induced cavities and direct the growth of new neurons, with effective drug loading to improve the local micro-organism environment and promote neural tissue regeneration. In this study, a double crosslinked biomimetic composite hydrogel comprised of acellularized spinal cord matrix (ASCM) and gelatin-acrylated-β-cyclodextrin-polyethene glycol diacrylate (designated G-CD-PEGDA) hydrogel, loaded with WAY-316606 to activate canonical Wnt/β-catenin signaling, and reinforced by a bundle of three-dimensionally printed aligned polycaprolactone (PCL) microfibers, was constructed.
View Article and Find Full Text PDFSpinal cord injury (SCI) is a traumatic injury to the central nervous system (CNS) with a high rate of disability and a low capability of self-recovery. Phosphatase and tensin homolog (PTEN) inhibition by pharmacological blockade with bisperoxovanadium (pic) (bpV(pic)) has been reported to increase AKT/mTOR activity and induce robust axonal elongation and regeneration. However, the therapeutic effect of bpV(pic) in treating SCI is limited due to the lack of efficient delivery approaches.
View Article and Find Full Text PDF